Time-marching algorithms for nonlocal evolution equations based upon ''approximate approximations''

被引:16
|
作者
Karlin, V [1 ]
Mazya, V [1 ]
机构
[1] LINKOPING UNIV,LINKOPING,SWEDEN
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1997年 / 18卷 / 03期
关键词
initial value problem; numerical solution; ''approximate approximation''; nonlocal evolution equations; time-marching algorithms;
D O I
10.1137/S1064827594270221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New time-marching algorithms for solving initial value problems for nonlocal evolution equations are described. With respect to the space variable the discretization is based on a method of ''approximate approximation'' proposed by the second author, In time the algorithms are finite-difference schemes of either the first or the second approximation order, whereas with respect to the space variables we use ''approximate approximations'' of an arbitrary high order. The algorithms are stable under mild restrictions to the time step which come from the nonlinear part of the equation. Some computational results and hints on crucial implementation issues are provided.
引用
收藏
页码:736 / 752
页数:17
相关论文
共 50 条
  • [11] Numerical Approximations of Diblock Copolymer Model Using a Modified Leapfrog Time-Marching Scheme
    Chen, Lizhen
    Ma, Ying
    Ren, Bo
    Zhang, Guohui
    [J]. COMPUTATION, 2023, 11 (11)
  • [12] Time-marching method for complicated compressible flow equations with source term
    Yamamoto, S
    [J]. COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 133 - 138
  • [13] Convolution finite element method: an alternative approach for time integration and time-marching algorithms
    A. Amiri-Hezaveh
    A. Masud
    M. Ostoja-Starzewski
    [J]. Computational Mechanics, 2021, 68 : 667 - 696
  • [14] Convolution finite element method: an alternative approach for time integration and time-marching algorithms
    Amiri-Hezaveh, A.
    Masud, A.
    Ostoja-Starzewski, M.
    [J]. COMPUTATIONAL MECHANICS, 2021, 68 (03) : 667 - 696
  • [15] Implicit high-order time-marching schemes for the linearized Euler equations
    Arambatzis, George
    Vavilis, Panagiotis
    Toulopoulos, Ioannis
    Ekaterinaris, John A.
    [J]. AIAA JOURNAL, 2007, 45 (08) : 1819 - 1826
  • [16] Turbine through flow design based on time-marching method
    Jiang, Zhuyu
    Fan, Zhaolin
    Qiu, Ming
    Ye, Wenming
    [J]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (08):
  • [17] The Time-Marching Method of Fundamental Solutions for Multi-Dimensional Telegraph Equations
    Lin, C. Y.
    Gu, M. H.
    Young, D. L.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2010, 18 (01): : 43 - 68
  • [19] Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms
    Bhagwat, MJ
    Leishman, JG
    [J]. JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2001, 46 (01) : 59 - 71
  • [20] A new multigrid algorithm for non-linear equations in conjunction with time-marching procedures
    Durga, KK
    Ramakrishna, M
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (02) : 233 - 245