Closed-form solution of the two-dimensional sliding frictional contact problem for an orthotropic medium

被引:35
|
作者
Guler, Mehmet A. [1 ,2 ]
机构
[1] TOBB Univ Econ & Technol, Dept Mech Engn, TR-06560 Ankara, Turkey
[2] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
关键词
Orthotropic materials; Sliding frictional contact; Flat stamp; Singular integral equations; Contact stresses; 3-DIMENSIONAL GREENS-FUNCTIONS; HERTZIAN CONTACT; CRACK PROBLEM; HALF-SPACE; MECHANICS; MODEL;
D O I
10.1016/j.ijmecsci.2014.05.033
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The two-dimensional frictional contact problem of a rigid stamp sliding over an orthotropic medium is considered. The coordinate system is chosen such that it is aligned with the principal axes of orthotropy. It is parallel and perpendicular to the contact surface which is located along the x(1) axis. It is assumed that the condition of Coulomb friction prevails on the contact area. The two-dimensional half-plane problem is formulated using the Fourier integral transform method and the analytical formulation of the contact problem is reduced to a Cauchy-type singular integral equation of the second kind for the unknown contact pressure. The singular integral equation is solved analytically utilizing the Jacobi polynomials. With the application of the results to the crack initiation in an orthotropic medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state at either end of the flat stamp and on the determination of the contact stresses based on orthotropic material parameters. The present study provides the analytical solution of the contact stresses in terms of orthotropic material parameters, the coefficient of friction and the spatial coordinates. The strength of the singularities and the stress intensity factors at both ends of the stamp are also found in terms of the orthotropic material parameters and the coefficient of friction. This study reveals that orthotropic material parameters and the coefficient of friction have a great effect on the strength of stress singularities and distribution of the contact stresses. Adjusting these parameters will reduce these stresses that may have a bearing on the failure of the orthotropic medium. The results of this study will provide benchmark results for finite element analysts and stress engineers. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 88
页数:17
相关论文
共 50 条
  • [31] Correction to: A Closed-Form Solution to the Geometric Goat Problem
    Ingo Ullisch
    The Mathematical Intelligencer, 2024, 46 : 1 - 1
  • [32] A closed-form solution to a dynamic portfolio optimization problem
    Li, ZF
    Ng, KW
    Tan, KS
    Yang, HL
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 12 (04): : 517 - 526
  • [33] Closed-form solution for the reconstruction problem in porous media
    Giona, M
    Adrover, A
    AICHE JOURNAL, 1996, 42 (05) : 1407 - 1415
  • [34] FUNDAMENTAL SOLUTION FOR TWO-DIMENSIONAL PROBLEM IN ORTHOTROPIC PIEZOTHERMOELASTIC DIFFUSION MEDIA
    Kumar, Rajneesh
    Chawla, Vijay
    MATERIALS PHYSICS AND MECHANICS, 2013, 16 (02): : 159 - 174
  • [35] Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments
    Dutta, Jaideep
    Kundu, Balaram
    JOURNAL OF THERMAL BIOLOGY, 2018, 71 : 41 - 51
  • [36] Closed-form solutions for the contact problem of anisotropic materials indented by two collinear punches
    Zhou, Yue-Ting
    Kim, Tae-Won
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 89 : 332 - 343
  • [37] The Sliding Frictional Contact Problem in Two Dimensional Graded Materials Loaded by a Flat Stamp
    Khajehtourian, Romik
    Adibnazari, Saeed
    Tashi, Samaneh
    ADVANCED MATERIALS RESEARCH II, PTS 1 AND 2, 2012, 463-464 : 336 - 342
  • [38] A closed-form solution for the two-dimensional transport equation by the LTSN nodal method in the energy range of Compton effect
    Rodriguez, B. D. A.
    Vilhena, M. T.
    Hoff, G.
    Bodmann, B. E. J.
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (01) : 151 - 156
  • [39] A closed-form solution for the two-dimensional Fokker-Planck equation for electron transport in the range of Compton Effect
    Rodriguez, B. D. A.
    Vilhena, M. T.
    Borges, V.
    Hoff, G.
    ANNALS OF NUCLEAR ENERGY, 2008, 35 (05) : 958 - 962
  • [40] General Solution and Fundamental Solution for Two-Dimensional Problem in Orthotropic Thermoelastic Media with Voids
    Kumar, Rajneesh
    Chawla, Vijay
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2014, 3 (01) : 47 - 54