The third order melnikov function of a cubic integrable system under quadratic perturbations

被引:5
|
作者
Asheghi, R. [1 ]
Nabavi, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Melnikov functions; Integrable system; Quadratic perturbations; Limit cycles; Reversible; LIMIT-CYCLES;
D O I
10.1016/j.chaos.2020.110291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider a cubic integrable system under quadratic perturbations. We then study the limit cycles of the perturbed system by using Melnikov functions up to order three. We prove that the sharp upper bound of the number of limit cycles lies between six and seven. Also, we give an example that shows six limit cycles. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] LIMIT CYCLES FOR QUADRATIC AND CUBIC PLANAR DIFFERENTIAL EQUATIONS UNDER POLYNOMIAL PERTURBATIONS OF SMALL DEGREE
    Martins, Ricardo M.
    Gomide, Otavio M. L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3353 - 3386
  • [22] Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations
    Zhang, TH
    Han, MA
    Zang, H
    Meng, XZ
    CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1127 - 1138
  • [23] RAPID DETERMINATION OF A COMPENSATOR AND RESPONSE OF A THIRD ORDER SYSTEM IN QUADRATIC OPTIMALIZATION
    HUMBERT, C
    AUBRUN, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (25): : 1230 - &
  • [24] The Abelian integrals of a one-parameter Hamiltonian system under cubic perturbations
    Zhang, TH
    Chen, WC
    Hong, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (05): : 1853 - 1862
  • [25] The Abelian Integrals of a Class of Non-Hamiltonian System under Cubic Perturbations
    Qi, Xiaomei
    Chen, Wencheng
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 603 - 606
  • [26] Centers in a Quadratic System Obtained from a Scalar Third Order Differential Equation
    Buica, Adriana
    Garcia, Isaac A.
    Maza, Susanna
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 405 - 410
  • [27] ANALYSIS OF A QUADRATIC SYSTEM OBTAINED FROM A SCALAR THIRD ORDER DIFFERENTIAL EQUATION
    Dias, Fabio Scalco
    Mello, Luis Fernando
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [28] Cubic splines method for a system of third-order boundary value problems
    Al-Said, EA
    Noor, MA
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (2-3) : 195 - 204
  • [29] Discussion on localized pulses for third-order nonlinear Schrodinger equation and negative index material with quadratic cubic nonlinearity
    Rizvi, Syed T. R.
    Seadawy, Aly R.
    Shabbir, S.
    Khizar, S.
    Mustafa, B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (05):
  • [30] Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function
    Shu Sun
    Shu-Qian Cao
    Acta Mechanica Sinica, 2017, 33 : 200 - 207