Demonstration of Thermo-Optic Switch Consisting of Mach-Zehnder Polymer Waveguide Drawn Using Focused Proton Beam

被引:4
|
作者
Miura, Kenta [1 ]
Kiryu, Hiromu [2 ]
Ozawa, Yusuke [2 ]
Kubota, Atsushi [2 ]
Hiratani, Yuji [3 ]
Hanaizumi, Osamu [1 ]
Satoh, Takahiro
Ishii, Yasuyuki
Kohka, Masashi
Takano, Katsuyoshi [5 ]
Ohkubo, Takeru [4 ]
Yamazaki, Akiyoshi [4 ]
Kada, Wataru [1 ]
Yokoyama, Akihito [4 ]
Kamiya, Tomihiro [4 ]
机构
[1] Gunma Univ, Fac Sci & Technol, 1-5-1 Tenjin Cho, Kiryu, Gunma 3768515, Japan
[2] Gunma Univ, Grad Sch Engn, Kiryu, Gunma 3768515, Japan
[3] Hiroshima Int Univ, Fac Engn, Tokyo, Japan
[4] Takasaki Adv Radiat Res Inst, JapanAtom Energy Agcy, Tokyo, Japan
[5] Osaka Univ, Grad Sch Engn, Suita, Osaka 565, Japan
来源
关键词
proton beam writing; PMMA; Mach-Zehnder waveguide; thermo-optic switch;
D O I
10.4028/www.scientific.net/KEM.596.134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrated a PMMA-based thermo-optic switch consisting of a Mach-Zehnder (MZ) type waveguide drawn by proton beam writing (PBW) and working at lambda = 1.55 mu m. The MZ waveguide was drawn by symmetrically coupling two Y junctions with a core width of 8 mu m and a branching angle of 2 degrees. A Ti thin-film heater and Al electrodes were formed on the surface of the MZ waveguide using conventional photolithography and wet-etching processes. An ON/OFF ratio of 9.0 dB and a switching power of 43.9 mW were obtained from the sample. The switching power is lower than for conventional commercial silica-based switches.
引用
下载
收藏
页码:134 / +
页数:2
相关论文
共 50 条
  • [21] Silicon nitride thermo-optic on-chip Mach-Zehnder interferometer at visible wavelengths
    Wang, Xiaomin
    Ji, Peirui
    Li, Shaobo
    Wang, Fei
    Deng, Huiwen
    Yang, Shuming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [22] High-speed electro-optic switch using buried electrode structure in polymer Mach-Zehnder waveguide
    Sun, Jingwen
    Sun, Jian
    Yi, Yunji
    Qv, Lucheng
    Sun, Shiqi
    Wang, Fei
    Wang, Xibin
    Zhang, Daming
    MODERN PHYSICS LETTERS B, 2016, 30 (06):
  • [23] 1? 2 mode-independent polymeric thermo-optic switch based on a Mach-Zehnder interferometer with a multimode interferometer
    Sun, Shijie
    Sun, Xueqing
    Lian, Tianhang
    Che, Yuanhua
    Zhu, Mu
    Yu, Qidong
    Xie, Yuhang
    Wang, Xibin
    Zhang, Daming
    OPTICS EXPRESS, 2023, 31 (08) : 12049 - 12058
  • [24] Cost-Effective 2 x 2 Silicon Nitride Mach-Zehnder Interferometric (MZI) Thermo-Optic Switch
    Joo, Jiho
    Park, Jaegyu
    Kim, Gyungock
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (08) : 740 - 743
  • [25] Silicon thermo-optic variable optical attenuators based on Mach-Zehnder interference structures
    Wu, Qianqian
    Zhou, Linjie
    Sun, Xiaomeng
    Zhu, Haike
    Lu, Liangjun
    Chen, Jianping
    OPTICS COMMUNICATIONS, 2015, 341 : 69 - 73
  • [26] Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch
    Liu, Ke
    Zhang, Chenglong
    Mu, Sixuan
    Wang, Shuang
    Sorger, Volker J.
    OPTICS EXPRESS, 2016, 24 (14): : 15845 - 15853
  • [27] Performance-enhanced silicon thermo-optic Mach-Zehnder switch using laterally supported suspended phase arms and efficient electrodes
    Chen, Kai
    Duan, Fei
    Yu, Yonglin
    OPTICS LETTERS, 2019, 44 (04) : 951 - 954
  • [28] Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure
    Song, Reem
    Song, Hyun-Chae
    Steier, William H.
    Cox, Charles H., III
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (7-8) : 633 - 640
  • [29] Low-loss and broadband 2 x 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers
    Chen, Sitao
    Shi, Yaocheng
    He, Sailing
    Dai, Daoxin
    OPTICS LETTERS, 2016, 41 (04) : 836 - 839
  • [30] Coupling-Controlled Multiport Thermo-Optic Switch Using Polymer Waveguide Array
    Chen, Tao
    Dang, Zhangqi
    Liu, Zexu
    Ding, Zhenming
    Yang, Zhifang
    Zhang, Xiaodong
    Jiang, Xinhong
    Zhang, Ziyang
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (20) : 1135 - 1138