Interpolation for Brill-Noether space curves

被引:10
|
作者
Vogt, Isabel [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
14H50; 14H60;
D O I
10.1007/s00229-017-0961-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we compute the number of general points through which a general Brill-Noether space curve passes.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 50 条
  • [21] Brill-Noether varieties of k-gonal curves
    Pflueger, Nathan
    ADVANCES IN MATHEMATICS, 2017, 312 : 46 - 63
  • [22] MODULI OF BRILL-NOETHER PAIRS ON ALGEBRAIC-CURVES
    KING, AD
    NEWSTEAD, PE
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1995, 6 (05) : 733 - 748
  • [23] ON THE BRILL-NOETHER THEOREM
    EISENBUD, D
    HARRIS, J
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 131 - 137
  • [24] GENERA OF BRILL-NOETHER CURVES AND STAIRCASE PATHS IN YOUNG TABLEAUX
    Chan, Melody
    Martin, Alberto Lopez
    Pflueger, Nathan
    Teixidor i Bigas, Montserrat
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) : 3405 - 3439
  • [25] Severi varieties and Brill-Noether theory of curves on abelian surfaces
    Knutsen, Andreas Leopold
    Lelli-Chiesa, Margherita
    Mongardi, Giovanni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 : 161 - 200
  • [26] Global Brill-Noether theory over the Hurwitz space
    Larson, Eric
    Larson, Hannah
    Vogt, Isabel
    GEOMETRY & TOPOLOGY, 2025, 29 (01)
  • [27] On the geometry and Brill-Noether theory of spanned vector bundles on curves
    Ballico, E
    Russo, B
    HIGHER DIMENSIONAL COMPLEX VARIETIES, 1996, : 23 - 38
  • [28] Curves on Brill-Noether special K3 surfaces
    Haburcak, Richard
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (12) : 4497 - 4509
  • [29] Nonemptiness of Brill-Noether loci
    Brambila-Paz, L
    Mercat, V
    Newstead, PE
    Ongay, F
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (06) : 737 - 760
  • [30] Invariants of the Brill-Noether curve
    Castorena, Abel
    Martin, Alberto Lopez
    Bigas, Montserrat Teixidor I.
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 39 - 52