The Beilinson regulator is a map of ring spectra

被引:5
|
作者
Bunke, Ulrich [1 ]
Nikolaus, Thomas [2 ]
Tamme, Georg [1 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Munster, FB Math & Informat, Einsteinstr 62, D-48149 Munster, Germany
关键词
Beilinson regulator; K-theory; Absolute Hodge cohomology; Ring spectra; Motivic homotopy theory; ALGEBRAIC K-THEORY; INFINITY-CATEGORIES; SPACE;
D O I
10.1016/j.aim.2018.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Beilinson regulator, which is a map from K-theory to absolute Hodge cohomology of a smooth variety, admits a refinement to a map of Em-ring spectra in the sense of algebraic topology. To this end we exhibit absolute Hodge cohomology as the cohomology of a commutative differential graded algebra over R. The associated spectrum to this CDGA is the target of the refinement of the regulator and the usual K-theory spectrum is the source. To prove this result we compute the space of maps from the motivic K-theory spectrum to the motivic spectrum that represents absolute Hodge cohomology using the motivic Snaith theorem. We identify those maps which admit an Em-refinement and prove a uniqueness result for these refinements. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:41 / 86
页数:46
相关论文
共 50 条
  • [21] Phenotypic Map in Ring 14 Syndrome
    Zollino, Marcella
    Orteschi, Daniela
    Neri, Giovanni
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2010, 152A (01) : 237 - 237
  • [22] Units of equivariant ring spectra
    Santhanam, Rekha
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (03): : 1361 - 1403
  • [23] Moduli Problems for Ring Spectra
    Lurie, Jacob
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 1099 - +
  • [24] HOMOLOGICAL DIMENSIONS OF RING SPECTRA
    Hovey, Mark
    Lockridge, Keir
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2013, 15 (02) : 53 - 71
  • [25] Structured ring spectra and displays
    Lawson, Tyler
    GEOMETRY & TOPOLOGY, 2010, 14 (02) : 1111 - 1127
  • [26] Postnikov extensions of ring spectra
    Dugger, Daniel
    Shipley, Brooke
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1785 - 1829
  • [27] SPECTRA OF THE JOVIAN RING AND AMALTHEA
    NEUGEBAUER, G
    BECKLIN, EE
    JEWITT, DC
    TERRILE, RJ
    DANIELSON, GE
    ASTRONOMICAL JOURNAL, 1981, 86 (04): : 607 - 610
  • [28] Spectra of soft ring graphs
    Exner, P
    Tater, M
    WAVES IN RANDOM MEDIA, 2004, 14 (01): : S47 - S60
  • [29] DISCONTINUITIES OF RING SPECTRA AND PRESCHEMES
    LAZARD, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1967, 95 (01): : 95 - &
  • [30] Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    GEOMETRY & TOPOLOGY, 2018, 22 (07) : 3761 - 3825