Synthesis of multi-walled carbon nanotubes using tire pyrolysis oil as a carbon precursor by spray pyrolysis method

被引:15
|
作者
Parasuram, B. [1 ]
Sundaram, S. [2 ]
Sathiskumar, C. [3 ]
Karthikeyan, S. [4 ]
机构
[1] Salem Polytech Coll, Dept Mech Engn, Salem, Tamil Nadu, India
[2] Vidyaa Vikas Engn Coll, Dept Mech Engn, Tiruchengode, Tamil Nadu, India
[3] Bharathiar Univ, Res & Dev Ctr, Coimbatore, Tamil Nadu, India
[4] Chikkanna Govt Arts Coll, Dept Chem, Tirupur 641602, Tamil Nadu, India
关键词
Tire pyrolysis oil; ferrocene; carbon nanotubes; quartz substrate;
D O I
10.1080/24701556.2017.1357578
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Synthesis of multi-walled carbon nanotubes (MWNTs) by spray pyrolysis method on quartz substrate using tire pyrolysis oil as a carbon precursor with ferrocene as a catalyst at 950 degrees C is achieved. In the first phase of the present work, waste tire was converted into tire pyrolysis oil by thermal pyrolysis process. The maximum pyrolytic yield of 40.0 wt.% was obtained at 400 degrees C. The waste pyrolysis tire oils separated into three fractions based on its boiling point viz., low boiling point liquid (45-205 (A) over cap degrees C), moderate oil (205-300 (A) over cap degrees C) and high boiling point oil (>300 (A) over cap degrees C). The low boiling point liquid is a complex mixture of C-10-C-29 organic compounds. In the second phase of the investigation, the organic liquid fraction was chosen as a carbon precursor for the synthesis of MWNTs. MWNTs were synthesized from low boiling point liquid by spray pyrolysis using ferrocene as a catalyst on quartz substrate at 950 degrees C.
引用
收藏
页码:103 / 106
页数:4
相关论文
共 50 条
  • [31] Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies
    Afre, Rakesh A.
    Soga, T.
    Jimbo, T.
    Kumar, Mukul
    Ando, Y.
    Sharon, M.
    Somani, Prakash R.
    Umeno, M.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2006, 96 (1-3) : 184 - 190
  • [32] Mineral magnetite as precursor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption
    Morel, Mauricio
    Mosquera, Edgar
    Diaz-Droguett, Donovan E.
    Carvajal, Nicolas
    Roble, Martin
    Rojas, Vania
    Espinoza-Gonzalez, Rodrigo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (45) : 15540 - 15548
  • [33] Synthesis of Multi-Walled Carbon Nanotubes via Flame
    Wang, Lanjuan
    Li, Chunzhong
    Xiao, Jiazhi
    CHEMICAL ENGINEERING, 2010, 3 : 25 - +
  • [34] Synthesis of carbon nanotubes, carbon spheres and slices of vertically aligned multi-walled carbon nanotubes
    Yao, Shushan
    EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 : 1325 - 1329
  • [35] CVD Synthesis and Purification of Multi-walled Carbon Nanotubes
    Yao, Yunjin
    Zhang, Suping
    Yan, Yongjie
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 562 - +
  • [36] Synthesis of polyaniline on multi-walled carbon nanotubes.
    Bruno, FF
    Samuelson, LA
    Roy, S
    Nagarajan, R
    Kumar, J
    Ziegler, D
    Sennett, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U460 - U460
  • [37] Synthesis of heterogenous multi-walled carbon nanotubes in a carbon arc in water
    Bystrzejewski, M.
    Lange, H.
    Huczko, A.
    Ruemmeli, M.
    Gemming, T.
    Pichler, T.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2006, 14 (2-3) : 207 - 213
  • [38] Synthesis and Characterization of Functionalized Multi-Walled Carbon Nanotubes
    Her, Shiuh-Chuan
    Lai, Chun-Yu
    MECHATRONICS AND COMPUTATIONAL MECHANICS, 2013, 307 : 377 - 380
  • [39] Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs)
    Arunkumar, T.
    Karthikeyan, R.
    Subramani, R. Ram
    Viswanathan, K.
    Anish, M.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 41 (04) : 452 - 456
  • [40] Alloy hydride catalyst route for the synthesis of single-walled carbon nanotubes, multi-walled carbon nanotubes and magnetic metal-filled multi-walled carbon nanotubes
    Reddy, A. Leela Mohana
    Shaijumon, M. M.
    Ramaprabhu, S.
    NANOTECHNOLOGY, 2006, 17 (21) : 5299 - 5305