Disentangling Complexity in Bayesian Automatic Adaptive Quadrature

被引:1
|
作者
Adam, Gheorghe [1 ,2 ]
Adam, Sanda [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Informat Technol Lab, 6 Joliot Curie St, Dubna 141980, Moscow Region, Russia
[2] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, 30 Reactorului St, Magurele 077125, Romania
关键词
CLENSHAW-CURTIS;
D O I
10.1051/epjconf/201817301001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper describes a Bayesian automatic adaptive quadrature (BAAQ) solution for numerical integration which is simultaneously robust, reliable, and efficient. Detailed discussion is provided of three main factors which contribute to the enhancement of these features: (1) refinement of the m-panel automatic adaptive scheme through the use of integration-domain-length-scale-adapted quadrature sums; (2) fast early problem complexity assessment enables the non-transitive choice among three execution paths: (i) immediate termination (exceptional cases); (ii) pessimistic involves time and resource consuming Bayesian inference resulting in radical reformulation of the problem to be solved; (iii) optimistic asks exclusively for subrange subdivision by bisection; (3) use of the weaker accuracy target from the two possible ones (the input accuracy specifications and the intrinsic integrand properties respectively) results in maximum possible solution accuracy under minimum possible computing time.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Disentangling the Computational Complexity of Network Untangling
    Froese, Vincent
    Kunz, Pascal
    Zschoche, Philipp
    THEORY OF COMPUTING SYSTEMS, 2024, 68 (01) : 103 - 121
  • [32] Adaptive Quadrature—Revisited
    Walter Gander
    Walter Gautschi
    BIT Numerical Mathematics, 2000, 40 : 84 - 101
  • [33] Disentangling the Computational Complexity of Network Untangling
    Vincent Froese
    Pascal Kunz
    Philipp Zschoche
    Theory of Computing Systems, 2024, 68 : 103 - 121
  • [34] EXTRAPOLATED ADAPTIVE QUADRATURE
    KAHANER, D
    STOER, J
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (01): : 31 - 44
  • [35] Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems
    Chen, Peng
    Villa, Umberto
    Ghattas, Omar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 147 - 172
  • [36] Adaptive quadrature - Revisited
    Gander, W
    Gautschi, W
    BIT, 2000, 40 (01): : 84 - 101
  • [37] Disentangling Complexity from Randomness and Chaos
    Zuchowski, Lena C.
    ENTROPY, 2012, 14 (02) : 177 - 212
  • [38] An automatic adaptive method to combine summary statistics in approximate Bayesian computation
    Harrison, Jonathan U.
    Baker, Ruth E.
    PLOS ONE, 2020, 15 (08):
  • [39] FAST ADAPTIVE VARIATIONAL SPARSE BAYESIAN LEARNING WITH AUTOMATIC RELEVANCE DETERMINATION
    Shutin, Dmitriy
    Buchgraber, Thomas
    Kulkarni, Sanjeev R.
    Poor, H. Vincent
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2180 - 2183
  • [40] AUTOMATIC ADJUSTMENT OF QUADRATURE MODULATORS
    FAULKNER, M
    MATTSSON, T
    YATES, W
    ELECTRONICS LETTERS, 1991, 27 (03) : 214 - 216