Large-Scale Density Functional Theory Transition State Searching in Enzymes

被引:48
|
作者
Lever, Greg [1 ]
Cole, Daniel J. [1 ,2 ]
Lonsdale, Richard [3 ]
Ranaghan, Kara E. [3 ]
Wales, David J. [4 ]
Mulholland, Adrian J. [3 ]
Skylaris, Chris-Kriton [5 ]
Payne, Mike C. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB3 0HE, England
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Univ Bristol, Sch Chem, Ctr Computat Chem, Bristol BS8 1TS, Avon, England
[4] Univ Chem Lab, Cambridge CB2 1EW, England
[5] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
来源
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
CURVILINEAR COORDINATE APPROXIMATION; MONOFUNCTIONAL CHORISMATE MUTASE; BACILLUS-SUBTILIS; CONFORMATIONAL EQUILIBRIUM; LIGAND-BINDING; GEOMETRY; STABILIZATION; REARRANGEMENT; SPECTROSCOPY; PREPHENATE;
D O I
10.1021/jz5018703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and energetics. The activation energy barrier is calculated to be lowered by 10.5 kcal mol(-1) in the enzyme, compared with the equivalent reaction in water, which is in good agreement with experiment. Natural bond orbital analysis identifies a number of active site residues that are important for transition state stabilization in chorismate mutase. This benchmark study demonstrates that linear-scaling density functional theory techniques are capable of simulating entire enzymes at the ab initio quantum mechanical level of accuracy. [GRAPHICS]
引用
收藏
页码:3614 / 3619
页数:6
相关论文
共 50 条
  • [21] Large-scale density-functional calculations on silicon divacancies
    Iwata, Jun-ichi
    Shiraishi, Kenji
    Oshiyama, Atsushi
    PHYSICAL REVIEW B, 2008, 77 (11):
  • [22] Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
    Shimojo, F.
    Ohmura, S.
    Nakano, A.
    Kalia, R. K.
    Vashishta, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 196 (01): : 53 - 63
  • [23] Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
    Shimojo, F.
    Ohmura, S.
    Nakano, A.
    Kalia, R. K.
    Vashishta, P.
    LAM14 - XIV LIQUID AND AMORPHOUS METALS CONFERENCE, 2011, 15
  • [24] Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
    F. Shimojo
    S. Ohmura
    A. Nakano
    R. K. Kalia
    P. Vashishta
    The European Physical Journal Special Topics, 2011, 196 : 53 - 63
  • [25] Large-scale atomistic density functional theory calculations of phosphorus-doped silicon quantum bits
    Greenman, Loren
    Whitley, Heather D.
    Whaley, Birgitta
    PHYSICAL REVIEW B, 2013, 88 (16)
  • [26] Massively parallel implementation of iterative eigensolvers in large-scale plane-wave density functional theory
    Feng, Junwei
    Wan, Lingyun
    Li, Jielan
    Jiao, Shizhe
    Cui, Xinhui
    Hu, Wei
    Yang, Jinlong
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 299
  • [27] Tucker-tensor algorithm for large-scale Kohn-Sham density functional theory calculations
    Motamarri, Phani
    Gavini, Vikram
    Blesgen, Thomas
    PHYSICAL REVIEW B, 2016, 93 (12)
  • [28] LARGE-SCALE PRODUCTION OF THE AZOTOBACTER FOR ENZYMES
    ALEXANDER, M
    WILSON, PW
    APPLIED MICROBIOLOGY, 1954, 2 (03) : 135 - 140
  • [29] Functional observability and target state estimation in large-scale networks
    Montanari, Arthur N.
    Duan, Chao
    Aguirre, Luis A.
    Motter, Adilson E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (01)
  • [30] Searching for light relics with large-scale structure
    Baumann, Daniel
    Green, Daniel
    Wallisch, Benjamin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (08):