Large-Scale Density Functional Theory Transition State Searching in Enzymes

被引:48
|
作者
Lever, Greg [1 ]
Cole, Daniel J. [1 ,2 ]
Lonsdale, Richard [3 ]
Ranaghan, Kara E. [3 ]
Wales, David J. [4 ]
Mulholland, Adrian J. [3 ]
Skylaris, Chris-Kriton [5 ]
Payne, Mike C. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB3 0HE, England
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Univ Bristol, Sch Chem, Ctr Computat Chem, Bristol BS8 1TS, Avon, England
[4] Univ Chem Lab, Cambridge CB2 1EW, England
[5] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
来源
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
CURVILINEAR COORDINATE APPROXIMATION; MONOFUNCTIONAL CHORISMATE MUTASE; BACILLUS-SUBTILIS; CONFORMATIONAL EQUILIBRIUM; LIGAND-BINDING; GEOMETRY; STABILIZATION; REARRANGEMENT; SPECTROSCOPY; PREPHENATE;
D O I
10.1021/jz5018703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and energetics. The activation energy barrier is calculated to be lowered by 10.5 kcal mol(-1) in the enzyme, compared with the equivalent reaction in water, which is in good agreement with experiment. Natural bond orbital analysis identifies a number of active site residues that are important for transition state stabilization in chorismate mutase. This benchmark study demonstrates that linear-scaling density functional theory techniques are capable of simulating entire enzymes at the ab initio quantum mechanical level of accuracy. [GRAPHICS]
引用
收藏
页码:3614 / 3619
页数:6
相关论文
共 50 条
  • [1] Applications of large-scale density functional theory in biology
    Cole, Daniel J.
    Hine, Nicholas D. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (39)
  • [2] Novel approaches for large-scale density functional theory calculations.
    HeadGordon, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 273 - COMP
  • [3] Free energies of binding from large-scale density functional theory
    Skylaris, Chris-Kriton
    Fox, Stephen
    Pittock, Chris
    Essex, Jonathan W.
    Fox, Thomas
    Tautermann, Christofer
    Malcolm, Noj
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [4] Large-Scale Density Functional Theory Investigation of Failure Modes in ZnO Nanowires
    Agrawal, Ravi
    Paci, Jeffrey T.
    Espinosa, Horacio D.
    NANO LETTERS, 2010, 10 (09) : 3432 - 3438
  • [5] Large-scale electronic-structure calculations for nanomaterials in density functional theory
    Oshiyama, Atsushi
    Iwata, Jun-ichi
    INTERNATIONAL SYMPOSIUM: NANOSCIENCE AND QUANTUM PHYSICS 2011 (NANOPHYS'11), 2011, 302
  • [6] Subspace formulation of time-dependent density functional theory for large-scale calculations
    Zhang, Xu
    Lu, Gang
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (06):
  • [7] Large-scale, density functional theory-based screening of alloys for hydrogen evolution
    Greeley, Jeff
    Norskov, Jens K.
    SURFACE SCIENCE, 2007, 601 (06) : 1590 - 1598
  • [8] Large-scale density functional theory simulations of defects and hydrogen incorporation in PuO 2
    Anwar, Nabeel
    Harker, Robert M.
    Storr, Mark T.
    Molinari, Marco
    Skylaris, Chris-Kriton
    PHYSICAL REVIEW B, 2024, 109 (22)
  • [9] A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations
    Zhou, Weiqing
    Yuan, Shengjun
    CHINESE PHYSICS LETTERS, 2023, 40 (02)
  • [10] A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations
    周巍青
    袁声军
    Chinese Physics Letters, 2023, 40 (02) : 50 - 66