Deep learning electromagnetic inversion with convolutional neural networks

被引:192
|
作者
Puzyrev, Vladimir [1 ,2 ]
机构
[1] Curtin Univ, Sch Earth & Planetary Sci, Kent St, Perth, WA 6102, Australia
[2] Curtin Univ, Oil & Gas Innovat Ctr, Kent St, Perth, WA 6102, Australia
关键词
Controlled source electromagnetics (CSEM); Image processing; Inverse theory; Neural networks; Numerical modelling; FINITE-DIFFERENCE; FRAMEWORK; ELEMENT;
D O I
10.1093/gji/ggz204
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Geophysical inversion attempts to estimate the distribution of physical properties in the Earth's interior from observations collected at or above the surface. Inverse problems are commonly posed as least-squares optimization problems in high-dimensional parameter spaces. Existing approaches are largely based on deterministic gradient-based methods, which are limited by non-linearity and non-uniqueness of the inverse problem. Probabilistic inversion methods, despite their great potential in uncertainty quantification, still remain a formidable computational task. In this paper, I explore the potential of deep learning (DL) methods for electromagnetic (EM) inversion. This approach does not require calculation of the gradient and, once the network is trained, provides results instantaneously. Deep neural networks based on fully convolutional architecture are trained on large synthetic data sets obtained by full 3-D simulations. The performance of the method is demonstrated on models of strong practical relevance representing an onshore controlled source electromagnetic CO2 monitoring scenario. The pre-trained networks can reliably estimate the position and lateral dimensions of the anomalies, as well as their resistivity properties. Several fully convolutional network architectures are compared in terms of their accuracy, generalization and cost of training. Examples with different survey geometry and noise levels confirm the feasibility of the DL inversion, opening the possibility to estimate the subsurface resistivity distribution in real time.
引用
收藏
页码:817 / 832
页数:16
相关论文
共 50 条
  • [21] Deep Learning based on Image Recognition Convolutional Neural Networks
    Alamri, Salah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 559 - 566
  • [22] Deep Learning in Liver Biopsies using Convolutional Neural Networks
    Arjmand, Alexandros
    Angelis, Constantinos T.
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Glavas, Evripidis
    Forlano, Roberta
    Manousou, Pinelopi
    Giannakeas, Nikolaos
    2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 496 - 499
  • [23] A deep learning approach to identify blepharoptosis by convolutional neural networks
    Hung, Ju-Yi
    Perera, Chandrashan
    Chen, Ke-Wei
    Myung, David
    Chiu, Hsu-Kuang
    Fuh, Chiou-Shann
    Hsu, Cherng-Ru
    Liao, Shu-Lang
    Kossler, Andrea Lora
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 148
  • [24] Optimized Quantization for Convolutional Deep Neural Networks in Federated Learning
    Kim, You Jun
    Hong, Choong Seon
    APNOMS 2020: 2020 21ST ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2020, : 150 - 154
  • [25] IMPROVING DEEP CONVOLUTIONAL NEURAL NETWORKS WITH UNSUPERVISED FEATURE LEARNING
    Kien Nguyen
    Fookes, Clinton
    Sridharan, Sridha
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2270 - 2274
  • [26] Deep Learning with Convolutional Neural Networks for Histopathology Image Analysis
    Bosnacki, Dragan
    van Riel, Natal
    Veta, Mitko
    AUTOMATED REASONING FOR SYSTEMS BIOLOGY AND MEDICINE, 2019, 30 : 453 - 469
  • [27] Learning Cartographic Building Generalization with Deep Convolutional Neural Networks
    Feng, Yu
    Thiemann, Frank
    Sester, Monika
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (06)
  • [28] Deep Learning Convolutional Neural Networks with Dropout - a Parallel Approach
    Shen, Jingyi
    Shafiq, M. Omair
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 572 - 577
  • [29] Learning Deep Graph Representations via Convolutional Neural Networks
    Ye, Wei
    Askarisichani, Omid
    Jones, Alex
    Singh, Ambuj
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2268 - 2279
  • [30] Curriculum Learning for Depth Estimation with Deep Convolutional Neural Networks
    Surendranath, Ajay
    Jayagopi, Dinesh Babu
    PROCEEDINGS OF THE 2ND MEDITERRANEAN CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (MEDPRAI-2018), 2018, : 95 - 100