Multi-Scale, Multi-Physics Approach for Solid Oxide Fuel Cell Anode Reaction

被引:1
|
作者
Liu, S. [1 ]
Liu, S. [1 ]
Saha, L. C. [1 ]
Iskandarov, A. M. [2 ]
Jiao, Z. [3 ]
Hara, S. [4 ]
Ishimoto, T. [5 ]
Tada, T. [2 ]
Umeno, Y. [3 ]
Shikazono, N. [3 ]
Matsumura, S. [6 ]
Koyama, M. [1 ,7 ]
机构
[1] Kyushu Univ, INAMORI Frontier Res Ctr, Fukuoka, Fukuoka 8190395, Japan
[2] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Yokohama, Kanagawa 2268503, Japan
[3] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[4] Chiba Inst Technol, Fac Engn, Narashino, Chiba 2750016, Japan
[5] Hiroshima Univ, Grad Sch Engn, Higashihiroshima, Hiroshima 7398527, Japan
[6] Kyushu Univ, Ultramicroscopy Res Ctr, Fukuoka, Fukuoka 8190395, Japan
[7] Natl Inst Mat Sci, Global Res Ctr Environm & Energy Based Nanomat Sc, Tsukuba, Ibaraki 3050044, Japan
来源
SOLID OXIDE FUEL CELLS 15 (SOFC-XV) | 2017年 / 78卷 / 01期
基金
日本科学技术振兴机构;
关键词
DENSITY-FUNCTIONAL THEORY; YTTRIA-STABILIZED ZIRCONIA; HYDROGEN OXIDATION; PATTERN ANODES; YSZ; ELECTROCHEMISTRY; ATMOSPHERE; DIFFUSION; SPILLOVER; KINETICS;
D O I
10.1149/07801.2835ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrode performance in solid oxide fuel cell depends both on electrode materials and microstructure. Therefore, it is important to breakdown the complexity of multi-physics in the porous electrode into processes in different scales. To clarify the multi-physics toward better electrode design, the use of both the advanced measurement and the simulation techniques is inevitable. For this purpose, we have taken the combined top-down and bottom-up approaches. In this manuscript, we discuss the practical issues in multi-scale, multi-physics simulation, focusing on the local activity of Ni-YSZ anode.
引用
收藏
页码:2835 / 2844
页数:10
相关论文
共 50 条
  • [42] Multi-Scale and Multi-Physics Models of the Transport of Therapeutic/Diagnostic Cancer Agents
    Moradi Kashkooli, Farshad
    Kolios, Michael C.
    CANCERS, 2023, 15 (24)
  • [43] Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system
    Burrowes, K. S.
    Swan, A. J.
    Warren, N. J.
    Tawhai, M. H.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1879): : 3247 - 3263
  • [44] Towards a coupled multi-scale, multi-physics simulation framework for aluminium electrolysis
    Einarsrud, Kristian Etienne
    Eick, Ingo
    Bai, Wei
    Feng, Yuqing
    Hua, Jinsong
    Witt, Peter J.
    APPLIED MATHEMATICAL MODELLING, 2017, 44 : 3 - 24
  • [45] Editorial: Vascular Disease Multi-Scale Multi-Physics Modeling and Experimental Data
    Kharche, Sanjay R.
    Dobrzynski, Halina
    Goldman, Daniel
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [46] In Memory of Edmund John Crampin: Multi-scale and multi-physics phenomena in biology
    Schnell, Santiago
    Maini, Philip K.
    MATHEMATICAL BIOSCIENCES, 2024, 376
  • [47] A nested dynamic multi-scale approach for 3D problems accounting for micro-scale multi-physics
    Wiechert, L.
    Wall, W. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) : 1342 - 1351
  • [48] Multi-physics Simulation of Hydrogen PEM Fuel Cell
    Mukherjee, S.
    Gidwani, A.
    Roy, A.
    Cole, J. V.
    Jain, K.
    Bapat, C.
    Thoms, R.
    FUEL CELL MEMBRANES, ELECTRODE BINDERS, AND MEA PERFORMANCE, 2010, 28 (27): : 93 - 102
  • [49] Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation
    Xu, Haoran
    Ma, Jingbo
    Tan, Peng
    Chen, Bin
    Wu, Zhen
    Zhang, Yanxiang
    Wang, Huizhi
    Xuan, Jin
    Ni, Meng
    ENERGY AND AI, 2020, 1
  • [50] FE/PDE: a novel approach applied to PC plate structure with multi-scale and multi-physics field coupling
    Qian, Denghui
    Liu, Guoqing
    PHYSICA SCRIPTA, 2024, 99 (06)