A class of infinitely divisible distributions connected to branching processes and random walks

被引:3
|
作者
Bondesson, L
Steutel, F
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Umea Univ, Dept Math Stat, SE-90187 Umea, Sweden
关键词
infinite divisibility; branching processes; random walk; first passage time; Burmann-Lagrange formula; negative binomial distribution; borel distribution; Lambert's W; complete monotonicity;
D O I
10.1016/j.jmaa.2004.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of infinitely divisible distributions on {0, 1, 2,...} is defined by requiring the (discrete) Levy function to be equal to the probability function except for a very simple factor. These distributions turn out to be special cases of the total offspring distributions in (sub)critical branching processes and can also be interpreted as first passage times in certain random walks. There are connections with Lambert's W function and generalized negative binomial convolutions. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [31] DISTRIBUTIONS OF SUBADDITIVE FUNCTIONALS OF SAMPLE PATHS OF INFINITELY DIVISIBLE PROCESSES
    ROSINSKI, J
    SAMORODNITSKY, G
    ANNALS OF PROBABILITY, 1993, 21 (02): : 996 - 1014
  • [32] INFINITELY DIVISIBLE PROCESSES
    MARUYAMA, G
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (01): : 1 - &
  • [33] INFINITELY DIVISIBLE DISTRIBUTIONS IN TURBULENCE
    NOVIKOV, EA
    PHYSICAL REVIEW E, 1994, 50 (05) : R3303 - R3305
  • [34] EQUIVALENCE OF INFINITELY DIVISIBLE DISTRIBUTIONS
    HUDSON, WN
    TUCKER, HG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A234 - A234
  • [35] EQUIVALENCE OF INFINITELY DIVISIBLE DISTRIBUTIONS
    HUDSON, WN
    TUCKER, HG
    ANNALS OF PROBABILITY, 1975, 3 (01): : 70 - 79
  • [36] MOMENTS OF INFINITELY DIVISIBLE DISTRIBUTIONS
    STEUTEL, FW
    ADVANCES IN APPLIED PROBABILITY, 1978, 10 (02) : 285 - 285
  • [37] FACTORIZATION OF INFINITELY DIVISIBLE DISTRIBUTIONS
    FRYNTOV, AE
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (03): : 661 - 664
  • [38] Cumulants of infinitely divisible distributions
    Gupta, Arjun K.
    Shanbhag, Damodar N.
    Nguyen, Truc T.
    Chen, J. T.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2009, 17 (02) : 103 - 124
  • [39] Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws
    Muzy, JF
    Bacry, E
    PHYSICAL REVIEW E, 2002, 66 (05): : 16
  • [40] TAILS OF INFINITELY DIVISIBLE DISTRIBUTIONS
    STEUTEL, FW
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 28 (04): : 273 - 276