Altimetry of the Venus cloud tops from the Venus Express observations

被引:126
|
作者
Ignatiev, N. I. [1 ,5 ]
Titov, D. V. [5 ]
Piccioni, G. [6 ]
Drossart, P. [3 ]
Markiewicz, W. J. [5 ]
Cottini, V. [6 ]
Roatsch, Th. [7 ]
Almeida, M. [2 ]
Manoel, N. [4 ,5 ]
机构
[1] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
[2] ESA, ESAC, E-28691 Madrid, Spain
[3] Observ Paris, LESIA, Sect Meudon, F-92195 Meudon, France
[4] Univ Evora, Dept Math, P-7000 Evora, Portugal
[5] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[6] IASF, INAF, I-00133 Rome, Italy
[7] German Aerosp Ctr, Inst Planetary Res, D-12489 Berlin, Germany
关键词
TEMPORAL VARIATIONS; MIDDLE ATMOSPHERE; POLARIZATION; VENERA-15; DYNAMICS; ORBITER; MISSION;
D O I
10.1029/2008JE003320
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Simultaneous observations of Venus by Visible and Infrared Thermal Imaging Spectrometer and Venus Monitoring Camera onboard the Venus Express spacecraft are used to map the cloud top altitude and to relate it to the ultraviolet (UV) markings. The cloud top altitude is retrieved from the depth of CO2 absorption band at 1.6 mu m. In low and middle latitudes the cloud top is located at 74 +/- 1 km. It decreases poleward of +/- 50 degrees and reaches 63-69 km in the polar regions. This depression coincides with the eye of the planetary vortex. At the same latitude and hour angle, cloud top can experience fast variations of about 1 km in tens of hours, while larger long-term variations of several kilometers have been observed only at high latitudes. UV markings correlate with the cloud altimetry, however, the difference between adjacent UV dark and bright regions does not exceed several hundred meters. Surprisingly, CO2 absorption bands are often weaker in the dark UV features, indicating that these clouds may be a few hundred meters higher or have a larger scale height than neighboring clouds. Ultraviolet dark spiral arms, which are often seen at about -70 degrees, correspond to higher altitudes or to the regions with strong latitudinal gradient of the cloud top altitude. Cloud altimetry in the polar region reveals the structure that correlates with the thermal emission maps but is invisible in UV images. This implies that the UV optically thick polar hood is transparent in the near IR.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Toroidal and poloidal magnetic fields at Venus. Venus Express observations
    Dubinin, E.
    Fraenz, M.
    Woch, J.
    Zhang, T. L.
    Wei, Y.
    Fedorov, A.
    Barabash, S.
    Lundin, R.
    PLANETARY AND SPACE SCIENCE, 2013, 87 : 19 - 29
  • [22] Characterizing the low-altitude magnetic belt at Venus: Complementary observations from the Pioneer Venus Orbiter and Venus Express
    Villarreal, M. N.
    Russell, C. T.
    Wei, H. Y.
    Ma, Y. J.
    Luhmann, J. G.
    Strangeway, R. J.
    Zhang, T. L.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (03) : 2232 - 2240
  • [23] Non-LTE infrared observations at Venus:: From NIMS/Galileo to VIRTIS/Venus express
    Lopez-Valverde, M. A.
    Drossart, Pierre
    Carlson, Robert
    Mehlman, R.
    Roos-Serote, Maarten
    PLANETARY AND SPACE SCIENCE, 2007, 55 (12) : 1757 - 1771
  • [24] Ultraviolet Contrasts and the Absorbers Near the Venus Cloud Tops
    Esposito, Larry W.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (A13) : 8151 - 8157
  • [25] Glory on Venus cloud tops and the unknown UV absorber
    Markiewicz, W. J.
    Petrova, E.
    Shalygina, O.
    Almeida, M.
    Titov, D. V.
    Limaye, S. S.
    Ignatiev, N.
    Roatsch, T.
    Matz, K. D.
    ICARUS, 2014, 234 : 200 - 203
  • [26] Venus Express/VIRTIS observations of middle and lower cloud variability and implications for dynamics
    McGouldrick, K.
    Baines, K. H.
    Momary, T. W.
    Grinspoon, D. H.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113 : E00B14
  • [27] Magnetic fields in the Venus ionosphere: Dependence on the IMF direction: Venus express observations
    Dubinin, E.
    Fraenz, M.
    Zhang, T. L.
    Woch, J.
    Wei, Y.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (09) : 7587 - 7600
  • [28] Morphology of magnetic field in near-Venus magnetotail: Venus express observations
    Rong, Z. J.
    Barabash, S.
    Futaana, Y.
    Stenberg, G.
    Zhang, T. L.
    Wan, W. X.
    Wei, Y.
    Wang, X. -D.
    Chai, L. H.
    Zhong, J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (11) : 8838 - 8847
  • [29] Venus monitoring camera for Venus express
    Markiewicz, W. J.
    Titov, D. V.
    Ignatiev, N.
    Keller, H. U.
    Crisp, D.
    Limaye, S. S.
    Jaumann, R.
    Moissl, R.
    Thomas, N.
    Esposito, L.
    Watanabe, S.
    Fiethe, B.
    Behnke, T.
    Szemerey, I.
    Michalik, H.
    Perplies, H.
    Wedemeier, M.
    Sebastian, I.
    Boogaerts, W.
    Hviid, S. F.
    Dierker, C.
    Osterloh, B.
    Boeker, W.
    Koch, M.
    Michaelis, H.
    Belyaev, D.
    Dannenberg, A.
    Tschimmel, M.
    Russo, P.
    Roatsch, T.
    Matz, K. D.
    PLANETARY AND SPACE SCIENCE, 2007, 55 (12) : 1701 - 1711
  • [30] Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations
    Tsang, Constantine C. C.
    Irwin, Patrick G. J.
    Wilson, Colin F.
    Taylor, Fredric W.
    Lee, Chris
    de Kok, Remco
    Drossart, Pierre
    Piccioni, Giuseppe
    Bezard, Bruno
    Calcutt, Simon
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113 : E00B08