On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid

被引:9
|
作者
Hundertmark-Zauskova, Anna [1 ]
Lukacova-Medvidova, Maria [1 ]
Necasova, Sarka [2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55122 Mainz, Germany
[2] Acad Sci Czech Republ, Zitna 25, Prague, Czech Republic
关键词
non-Newtonian fluids; fluid-structure interaction; shear-thinning fluids; shear-thickening fluids; hemodynamics; existence of weak solution; FLOWS; VISCOSITY; EQUATIONS; DOMAIN;
D O I
10.2969/jmsj/06810193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of weak solution for unsteady fluid structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.
引用
收藏
页码:193 / 243
页数:51
相关论文
共 50 条
  • [1] Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange
    Macha, Vaclav
    Muha, Boris
    Necasova, Sarka
    Roy, Arnab
    Trifunovic, Srdan
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (08) : 1591 - 1635
  • [2] Existence of a weak solution to the fluid-structure interaction problem in 3D
    Trifunovic, Srdan
    Wang, Ya-Guang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (04) : 1495 - 1531
  • [3] On the existence and the uniqueness of the solution to a fluid-structure interaction problem
    Boffi, Daniele
    Gastaldi, Lucia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 279 : 136 - 161
  • [4] Fluid-Structure Interaction of a thin cylindrical shell filled with a non-Newtonian fluid
    Zippo, Antonio
    Iarriccio, Giovanni
    Bergamini, Luca
    Colombini, Elena
    Veronesi, Paolo
    Pellicano, Francesco
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2023, 117
  • [5] On the existence and the uniqueness of the solution of a fluid-structure interaction scattering problem
    Barucq, Helene
    Djellouli, Rabia
    Estecahandy, Elodie
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 571 - 588
  • [6] Axisymmetric motion of a proposed generalized non-Newtonian fluid model with shear-dependent viscoelastic effects
    Carapau, Fernando
    Correia, Paulo
    Grilo, Luís M.
    Conceição, Ricardo
    [J]. IAENG International Journal of Applied Mathematics, 2017, 47 (04) : 361 - 370
  • [7] Existence for an unsteady fluid-structure interaction problem
    Grandmont, C
    Maday, Y
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 609 - 636
  • [8] Fluid-structure interaction modeling of lactating breast: Newtonian vs. non-Newtonian milk
    Azarnoosh, Jamasp
    Hassanipour, Fatemeh
    [J]. JOURNAL OF BIOMECHANICS, 2021, 124
  • [9] GLOBAL WEAK SOLUTIONS FOR A COUPLED CHEMOTAXIS NON-NEWTONIAN FLUID
    Bousbih, Hafedh
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (02): : 907 - 929
  • [10] The existence of a weak solution for a compressible multicomponent fluid structure interaction problem
    Kalousek, Martin
    Mitra, Sourav
    Necasova, Sarka
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 184 : 118 - 189