Generalized solutions for the Euler-Bernoulli model with distributional forces

被引:7
|
作者
Hoermann, Guenther [2 ]
Oparnica, Ljubica [1 ]
机构
[1] Serbian Acad Sci, Inst Math, Belgrade 11000, Serbia
[2] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Generalized solutions to partial differential equations; Functional analytic methods; Differential equations with discontinuous coefficients; Colombeau generalized functions; Nonlinear theories of generalized functions; DISCONTINUOUS COEFFICIENTS; EQUATIONS; ALGEBRAS;
D O I
10.1016/j.jmaa.2009.03.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence and uniqueness of generalized solutions to the initial-boundary value problem corresponding to an Euler-Bernoulli beam model from mechanics. The governing partial differential equation is of order four and involves discontinuous, and even distributional, coefficients and right-hand side. The general problem is solved by application of functional analytic techniques to obtain estimates for the solutions to regularized problems. Finally, we prove coherence properties and provide a regularity analysis of the generalized solution. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [21] TIMOSHENKO BEAM-BENDING SOLUTIONS IN TERMS OF EULER-BERNOULLI SOLUTIONS
    WANG, CM
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1995, 121 (06): : 763 - 765
  • [22] SHARP TRACE ESTIMATES OF SOLUTIONS TO KIRCHHOFF AND EULER-BERNOULLI EQUATIONS
    LASIECKA, I
    TRIGGIANI, R
    APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 28 (03): : 277 - 306
  • [23] OPTIMAL EULER-BERNOULLI CANTILEVER
    SIMITSES, GJ
    KOTRAS, T
    JOURNAL OF THE ENGINEERING MECHANICS DIVISION-ASCE, 1975, 101 (06): : 922 - 929
  • [24] Nodal solutions of a nonlinear eigenvalue problem of the Euler-Bernoulli equation
    Ma, Ruyun
    Gao, Chenghua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1160 - 1166
  • [25] Model Order Reduction of Nonlinear Euler-Bernoulli Beam
    Ilbeigi, Shahab
    Chelidze, David
    NONLINEAR DYNAMICS, VOL 1, 2017, : 377 - 385
  • [26] The periodic Euler-Bernoulli equation
    Papanicolaou, VG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) : 3727 - 3759
  • [27] Finite Segment Model Complexity of an Euler-Bernoulli Beam
    Louca, Loucas S.
    IFAC PAPERSONLINE, 2015, 48 (01): : 334 - 340
  • [28] Euler-Bernoulli Equation Today
    Filipovic, Mirjana
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 5691 - 5696
  • [29] Mechanically Based Nonlocal Euler-Bernoulli Beam Model
    Di Paola, Mario
    Failla, Giuseppe
    Zingales, Massimiliano
    JOURNAL OF NANOMECHANICS AND MICROMECHANICS, 2014, 4 (01)
  • [30] A new nonlocal bending model for Euler-Bernoulli nanobeams
    de Sciarra, Francesco Marotti
    Barretta, Raffaele
    MECHANICS RESEARCH COMMUNICATIONS, 2014, 62 : 25 - 30