Two filtrations of ribbon 2-knots

被引:17
|
作者
Kanenobu, T [1 ]
Shima, A
机构
[1] Osaka City Univ, Dept Math, Osaka 5588585, Japan
[2] Tokai Univ, Dept Math, Kanagawa 2591207, Japan
基金
日本学术振兴会;
关键词
finite type invariants; ribbon; 2-knots; filtrations;
D O I
10.1016/S0166-8641(01)00115-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We have constructed a 'Vassiliev-like' filtration on the free abelian group generated by the set of ribbon 2-knots in 4-space in two ways: one is from a ribbon 2-disk, and the other from a projection of a ribbon 2-knot onto a generic 3-space whose singular set consists of only double points. Each filtration determines a notion of finite type invariants for ribbon 2-knots. We prove that the two filtrations are the same, and thus, the two finite type invariants are coincident. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 168
页数:26
相关论文
共 50 条
  • [21] Clasper-moves among ribbon 2-knots characterizing their finite type invariants
    Watanabe, Tadayuki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (09) : 1163 - 1199
  • [22] Cubulated moves for 2-knots
    Pablo Diaz, Juan
    Hinojosa, Gabriela
    Verjosvky, Alberto
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (01)
  • [23] Shadows of 2-knots and complexity
    Naoe, Hironobu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (08):
  • [24] GEOMETRICALLY FIBERED 2-KNOTS
    HILLMAN, JA
    PLOTNICK, SP
    MATHEMATISCHE ANNALEN, 1990, 287 (02) : 259 - 273
  • [25] 2-KNOTS WITH SOLVABLE GROUPS
    Hillman, Jonathan A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (07) : 977 - 994
  • [26] The Groups of Fibred 2-Knots
    Hillman, Jonathan A.
    GEOMETRY AND TOPOLOGY DOWN UNDER, 2013, 597 : 281 - 294
  • [27] 2-CATEGORIES AND 2-KNOTS
    FISCHER, JE
    DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 493 - 526
  • [28] ON 2-KNOTS WITH TOTAL WIDTH EIGHT
    Saeki, Osamu
    Takeda, Yasushi
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) : 825 - 838
  • [29] 0-CONCORDANCE OF 2-KNOTS
    Sunukjian, Nathan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1747 - 1755
  • [30] Ribbon 2-knots, 1+1=2 and Duflo's theorem for arbitrary Lie algebras
    Bar-Natan, Dror
    Dancso, Zsuzsanna
    Scherich, Nancy
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (07): : 3733 - 3760