An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

被引:0
|
作者
Sa, Lucas [1 ]
机构
[1] Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Maxwell's equations; differential forms; 4-dimensional picture; undergraduate-oriented;
D O I
10.1088/1361-6404/aa57ce
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Maxwell's equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell's equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] On the representation of the Maxwell Heaviside equations in terms of the Barut field four vector
    Anastasovski, PK
    Bearden, TE
    Ciubotariu, C
    Coffey, WT
    Crowell, LB
    Evans, GJ
    Evans, MW
    Flower, R
    Jeffers, S
    Labounsky, A
    Lehnert, B
    Mészáros, M
    Molnár, PR
    Roy, S
    Vigier, JP
    OPTIK, 2000, 111 (06): : 246 - 248
  • [22] On the representation of the Maxwell Heaviside equations in terms of the Barut field four vector
    Anastasovski, Petar K.
    Bearden, T.E.
    Ciubotariu, C.
    Coffey, W.T.
    Crowell, L.B.
    Evans, G.J.
    Evans, M.W.
    Flower, R.
    Jeffers, S.
    Labounsky, A.
    Lehnert, B.
    Mészáros, M.
    Molnár, P.R.
    Roy, S.
    Vigier, J.-P.
    Optik (Jena), 2000, 111 (06): : 246 - 248
  • [23] Constructing Berry-Maxwell equations with Lorentz invariance and Gauss's law of Weyl monopoles in four-dimensional energy-momentum space
    Pan, Yiming
    Yin, Ruoyu
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [24] COMPOSITION METHODS, MAXWELL'S EQUATIONS, AND SOURCE TERMS
    Verwer, J. G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 439 - 457
  • [25] Conformal Killing 2-forms on four-dimensional manifolds
    Andrada, Adrian
    Laura Barberis, Maria
    Moroianu, Andrei
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 50 (04) : 381 - 394
  • [26] Three-forms, dualities and membranes in four-dimensional supergravity
    Bandos, Igor
    Farakos, Fotis
    Lanza, Stefano
    Martucci, Luca
    Sorokin, Dmitri
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [27] Three-forms, dualities and membranes in four-dimensional supergravity
    Igor Bandos
    Fotis Farakos
    Stefano Lanza
    Luca Martucci
    Dmitri Sorokin
    Journal of High Energy Physics, 2018
  • [28] Conformal Killing 2-forms on four-dimensional manifolds
    Adrián Andrada
    María Laura Barberis
    Andrei Moroianu
    Annals of Global Analysis and Geometry, 2016, 50 : 381 - 394
  • [29] Four-dimensional quadratic forms over C((t))(X)
    Gupta, Parul
    ARCHIV DER MATHEMATIK, 2021, 117 (04) : 369 - 374
  • [30] Exact static solutions in four-dimensional Einstein-Maxwell-dilaton gravity
    Yazadjiev, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1999, 8 (05): : 635 - 643