Optimal Control of Sweeping Processes in Robotics and Traffic Flow Models

被引:17
|
作者
Colombo, Giovanni [1 ]
Mordukhovich, Boris [2 ]
Dao Nguyen [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Optimal control; Sweeping process; Variational analysis; Discrete approximations; Necessary optimality conditions; Robotics; Traffic flows;
D O I
10.1007/s10957-019-01521-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper is mostly devoted to applications of a novel optimal control theory for perturbed sweeping/Moreau processes to two practical dynamical models. The first model addresses mobile robot dynamics with obstacles, and the second one concerns control and optimization of traffic flows. Describing these models as controlled sweeping processes with pointwise/hard control and state constraints and applying new necessary optimality conditions for such systems allow us to develop efficient procedures to solve naturally formulated optimal control problems for the models under consideration and completely calculate optimal solutions in particular situations.
引用
收藏
页码:439 / 472
页数:34
相关论文
共 50 条
  • [21] Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes
    Hermosilla, Cristopher
    Palladino, Michelle
    Vilches, Emilio
    SSRN, 2023,
  • [22] Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes
    Hermosilla, Cristopher
    Palladino, Michele
    Vilches, Emilio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [23] A Maximum Principle for Optimal Control Problems Involving Sweeping Processes with a Nonsmooth Set
    Maria do Rosário de Pinho
    Maria Margarida A. Ferreira
    Georgi Smirnov
    Journal of Optimization Theory and Applications, 2023, 199 (1) : 273 - 297
  • [24] Optimal Control Involving Sweeping Processes (vol 27, pg 523, 2019)
    de Pinho, M. D. R.
    Ferreira, M. M. A.
    Smirnov, G. V.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2019, 27 (04) : 1025 - 1027
  • [25] Optimal control in light traffic Markov decision processes
    Ger Koole
    Olaf Passchier
    Mathematical Methods of Operations Research, 1997, 45 : 63 - 79
  • [26] Optimal control in light traffic Markov Decision Processes
    INRIA, Sophia Antipolis, France
    ZOR, 1 (63-79):
  • [27] Optimal control in light traffic Markov decision processes
    Koole, G
    Passchier, O
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1997, 45 (01) : 63 - 79
  • [28] The optimal velocity traffic flow models with open boundaries
    Ez-Zahraouy, H
    Benrihane, Z
    Benyoussef, A
    EUROPEAN PHYSICAL JOURNAL B, 2003, 36 (02): : 289 - 293
  • [29] The optimal velocity traffic flow models with open boundaries
    H. Ez-Zahraouy
    Z. Benrihane
    A. Benyoussef
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 36 : 289 - 293
  • [30] A Framework for the Control of Bilevel Sweeping Processes
    Khalil, Nathalie T.
    Pereira, Fernando Lobo
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6175 - 6180