Spinless Particles Subject to Unequal Scalar-Vector Nuclear Woods-Saxon Potentials in Arbitrary Dimensions

被引:1
|
作者
Hamzavi, Majid [1 ]
Ikhdair, Sameer M. [2 ]
Rajabi, All Akbar [3 ]
机构
[1] Univ Zanjan, Dept Phys, Zanjan, Iran
[2] An Najah Natl Univ, Fac Sci, Dept Phys, Nablus, West Bank, Israel
[3] Shahrood Univ Technol, Dept Phys, Shahrood, Iran
关键词
Klein-Gordon Equation; Woods-Saxon Potential; D-Dimensional Space; Parametric Nikiforov-Uvarov Method; KLEIN-GORDON EQUATION; NIKIFOROV-UVAROV METHOD; PEKERIS-TYPE APPROXIMATION; PSEUDO-CENTRIFUGAL TERM; SCHRODINGER-EQUATION; L-STATE; DIATOMIC-MOLECULES; SYMMETRY; ORBIT;
D O I
10.5560/ZNA.2013-0066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present analytical bound state solutions of the spin-zero particles in the Klein-Gordon (KG) equation in presence of an unequal mixture of scalar and vector Woods-Saxon potentials within the framework of the approximation scheme to the centrifugal potential term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed forms using a parametric Nikiforov-Uvarov (NU) method. Our numerical energy eigenvalues demonstrate the existence of inter-dimensional degeneracy amongst energy states of the KG-Woods Saxon problem. The dependence of the energy levels on the dimension D is numerically discussed for spatial dimensions D = 2-6.
引用
收藏
页码:759 / 765
页数:7
相关论文
共 23 条