A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting

被引:318
|
作者
Kavousi-Fard, Abdollah [1 ]
Samet, Haidar [2 ]
Marzbani, Fatemeh [3 ]
机构
[1] Islamic Azad Univ, Sarvestan Branch, Dept Elect Engn, Sarvestan, Iran
[2] Shiraz Univ, Sch Elect & Comp Engn, Shiraz, Iran
[3] Amer Univ Sharjah, Sharjah, U Arab Emirates
关键词
Support Vector Regression (SVR); Modified Firefly Algorithm (MFA); Short Term Load Forecasting (STLF); Adaptive Modification Method; MACHINES; PARAMETERS; SELECTION; SVR;
D O I
10.1016/j.eswa.2014.03.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise forecast of the electrical load plays a highly significant role in the electricity industry and market. It provides economic operations and effective future plans for the utilities and power system operators. Due to the intermittent and uncertain characteristic of the electrical load, many research studies have been directed to nonlinear prediction methods. In this paper, a hybrid prediction algorithm comprised of Support Vector Regression (SVR) and Modified Firefly Algorithm (MFA) is proposed to provide the short term electrical load forecast. The SVR models utilize the nonlinear mapping feature to deal with nonlinear regressions. However, such models suffer from a methodical algorithm for obtaining the appropriate model parameters. Therefore, in the proposed method the MFA is employed to obtain the SVR parameters accurately and effectively. In order to evaluate the efficiency of the proposed methodology, it is applied to the electrical load demand in Fars, Iran. The obtained results are compared with those obtained from the ARMA model, ANN, SVR-GA, SVR-HBMO, SVR-PSO and SVR-FA. The experimental results affirm that the proposed algorithm outperforms other techniques. (C) 2014 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:6047 / 6056
页数:10
相关论文
共 50 条
  • [31] Adaptive Hybrid Optimized Support Vector Regression with Lasso Feature Selection for Short-term Load Forecasting
    Che, Jinxing
    Xian, Huafeng
    Zhang, Yuhua
    IAENG International Journal of Computer Science, 2021, 48 (04)
  • [32] Support vector machines with PSO algorithm for short-term load forecasting
    Sun, Changyin
    Gong, Dengcai
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, 2006, : 676 - 680
  • [33] Support Vector Machine with PSO Algorithm in Short-term Load Forecasting
    Gao Rong
    Liu Xiaohua
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1140 - 1142
  • [34] A load forecasting model based on support vector regression with whale optimization algorithm
    Lu, Yuting
    Wang, Gaocai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 9939 - 9959
  • [35] A load forecasting model based on support vector regression with whale optimization algorithm
    Yuting Lu
    Gaocai Wang
    Multimedia Tools and Applications, 2023, 82 : 9939 - 9959
  • [36] SUPPLIER SHORT TERM LOAD FORECASTING USING SUPPORT VECTOR REGRESSION AND EXOGENOUS INPUT
    Matijas, Marin
    Vukicevic, Milan
    Krajcar, Slavko
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2011, 62 (05): : 280 - 285
  • [37] Research on Short-Term Load Forecasting Based on Improved Support Vector Regression
    Wang, Baoyi
    Han, Tianyang
    Zhang, Shaomin
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016), 2016, 50 : 794 - 799
  • [38] Application of a hybrid model on short-term load forecasting based on support vector machines (SVM)
    Ao, Limin
    Wang, Yongchun
    Zhang, Qian
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2007, 50 (05) : 567 - 572
  • [39] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [40] Short-term load forecasting based on support vector regression considering cooling load in summer
    Hu, Li
    Zhang, Lei
    Wang, Tao
    Li, Kai
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5495 - 5498