Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach

被引:25
|
作者
Jasinski, Tomasz [1 ]
机构
[1] Lodz Univ Technol, Fac Management & Prod Engn, Piotrkowska 266, PL-90924 Lodz, Poland
关键词
Electricity price; Forecasting; Artificial neural network; Air temperature-based variable; THERMAL-COMFORT; HYBRID MODEL; MARKET; TIME; ALGORITHM; WEATHER; DEMAND; IMPACT; OPTIMIZATION; GENERATION;
D O I
10.1016/j.energy.2020.118784
中图分类号
O414.1 [热力学];
学科分类号
摘要
The paper presents a way of creating three new, innovative variables based on air temperature to be used in forecasts of electricity demand and prices. The forecasting methods developed so far, especially in the area of energy prices, either did not use temperature data or were based on data that had not undergone pre-processing, which made it difficult for the model to use their potential. Newly developed variables have a linear relationship with the demand for electricity. This paper describes in detail the procedure for determining the parameters of new variables using the electricity market in Poland (a country in Central Europe) as a case study. The proposed approach allows both to avoid data clustering into different seasons and to precisely determine the temperatures at which the nature of the dependence with the demand for electricity changes. The validity of the proposed new variables in prognostic models has been confirmed by their use in deep neural networks. The proposed approach allows reducing the sMAPE by up to 15.3%. The designed new explanatory variables can be used not only in models based on artificial intelligence tools, but also in other forecasting methods that allow the use of exogenous inputs. (C) 2020 The Author. Published by Elsevier Ltd.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Electricity Day-Ahead Market Price Forecasting by Using Artificial Neural Networks: An Application for Turkey
    Mehmet Kabak
    Taha Tasdemir
    Arabian Journal for Science and Engineering, 2020, 45 : 2317 - 2326
  • [22] Electricity Day-Ahead Market Price Forecasting by Using Artificial Neural Networks: An Application for Turkey
    Kabak, Mehmet
    Tasdemir, Taha
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (03) : 2317 - 2326
  • [23] Day-Ahead Electricity Price Forecasting Model Based on Artificial Neural Networks for Energy Markets
    Anbazhagan S.
    Ramachandran B.
    EAI Endorsed Transactions on Energy Web, 2021, 8 (33) : 1 - 10
  • [24] Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach
    Hu, Jian-Ming
    Wang, Jian-Zhou
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (06) : 2166 - 2176
  • [25] Forecasting electricity prices for a day-ahead pool-based electric energy market
    Conejo, AJ
    Contreras, J
    Espínola, R
    Plazas, MA
    INTERNATIONAL JOURNAL OF FORECASTING, 2005, 21 (03) : 435 - 462
  • [26] Price forecasting for day-ahead electricity market using Recursive Neural Network
    Mandal, Paras
    Senjyu, Tomonobu
    Urasaki, Naornitsu
    Yona, Atsushi
    Funabashi, Toshihisa
    Srivastava, Anurag K.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 3097 - 3104
  • [27] A Deep Learning Based Hybrid Framework for Day-Ahead Electricity Price Forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Ma, Zhengwei
    IEEE ACCESS, 2020, 8 : 143423 - 143436
  • [28] Forecasting the day-ahead price in electricity balancing and settlement market of Turkey by using artificial neural networks
    Kolmek, Mehmet Ali
    Navruz, Isa
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2015, 23 (03) : 841 - 852
  • [29] The Nonlinear Model by Using Neural Networks for Day-Ahead Price Forecasting
    Mezera, Jan
    Martinek, Zbynek
    Majer, Viktor
    Kralovcova, Veronika
    PROCEEDINGS OF THE 13TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2012, VOLS 1 AND 2, 2012, : 239 - 242
  • [30] Deep learning–based neural networks for day-ahead power load probability density forecasting
    Yanlai Zhou
    Di Zhu
    Hua Chen
    Shenglian Guo
    Chong-Yu Xu
    Fi-John Chang
    Environmental Science and Pollution Research, 2023, 30 : 17741 - 17764