Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations

被引:61
|
作者
Bhandari, Janarjan [1 ,2 ]
China, Swarup [1 ,2 ,4 ]
Chandrakar, Kamal Kant [1 ,2 ]
Kinney, Greg [1 ,2 ]
Cantrell, Will [1 ,2 ]
Shaw, Raymond A. [1 ,2 ]
Mazzoleni, Lynn R. [1 ,3 ]
Girotto, Giulia [1 ,2 ]
Sharma, Noopur [1 ,2 ,4 ]
Gorkowski, Kyle [1 ,2 ,5 ,9 ]
Gilardoni, Stefania [6 ]
Decesari, Stefano [6 ]
Facchini, Maria Cristina [6 ]
Zanca, Nicola [6 ,15 ,16 ]
Pavese, Giulia [7 ]
Esposito, Francesco [8 ]
Dubey, Manvendra K. [9 ]
Aiken, Allison C. [9 ]
Chakrabarty, Rajan K. [10 ]
Moosmueller, Hans [11 ]
Onasch, Timothy B. [12 ]
Zaveri, Rahul A. [4 ]
Scarnato, Barbara, V [13 ]
Fialho, Paulo [14 ]
Mazzoleni, Claudio [1 ,2 ]
机构
[1] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA
[4] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[5] McGill Univ, Atmospher & Ocean Sci, Montreal, PQ, Canada
[6] Inst Atmospher Sci & Climate CNR ISAC, Rome, Italy
[7] Inst Methodol Environm Anal CNR IMAA, Rome, Italy
[8] Univ Basilicata, Sch Engn, Potenza, Italy
[9] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA
[10] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63110 USA
[11] Desert Res Inst, Reno, NV USA
[12] Aerodyne Res Inc, Billerica, MA USA
[13] DNV GL, Hovik, Norway
[14] Univ Azores, Inst Invest Vulcanol & Avaliacao Riscos IVAR, Azores, Portugal
[15] Univ Helsinki, Dept Chem, Helsinki, Finland
[16] Univ Helsinki, Inst Atmospher & Earth Syst Res INAR, Helsinki, Finland
基金
美国国家科学基金会;
关键词
AEROSOL LIGHT-ABSORPTION; BLACK CARBON PARTICLES; MIXING STATE; DROPLET ACTIVATION; OPTICAL-PROPERTIES; FRACTAL DIMENSION; ORGANIC-COMPOUNDS; PART; MORPHOLOGY; SIZE;
D O I
10.1038/s41598-019-48143-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models.
引用
收藏
页数:12
相关论文
共 50 条
  • [32] The Use of Cloud Computing for Storing and Processing Instrumental Data from Seismological Observations Networks
    Sorokin, A. A.
    Korolev, S. P.
    Makogonov, S. V.
    Shestakov, N. V.
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 546 - 552
  • [33] Statistical compaction of a monitoring cloud cluster resource when processing streaming services
    Nazarov, Alexey
    Sychev, Artem
    Koupaei, Alireza Nik Aein
    Ojha, Sanjeev Kumar
    Rai, Himanshu
    2019 INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (ENT), 2019,
  • [34] Laboratory investigation of gyratory-vibratory compaction method for better simulating asphalt mixture field compaction
    Cheng, Zhiqiang
    Zhang, De
    Xie, Shengjia
    Polaczyk, Pawel
    Jia, Xiaoyang
    Wang, Tao
    Huang, Baoshan
    Cai, Ming
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 406
  • [35] Macro-meso multiscale analysis of asphalt concrete in different laboratory compaction methods and field compaction
    Zhao, Xu
    Niu, Dongyu
    Zhang, Peng
    Niu, Yanhui
    Xia, Huiyun
    Liu, Pengfei
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 361
  • [36] Behavior of remipedia in the laboratory, with supporting field observations
    Koenemann, Stefan
    Schram, Frederick R.
    Iliffe, Thomas M.
    Hinderstein, Lara M.
    Bloechl, Armin
    JOURNAL OF CRUSTACEAN BIOLOGY, 2007, 27 (04) : 534 - 542
  • [37] LABORATORY AND FIELD OBSERVATIONS OF GROWTH OF COLUMNAR AND PLATE CRYSTALS FROM FROZEN DROPLETS
    HEYMSFIELD, AJ
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1973, 30 (08) : 1650 - 1656
  • [38] Vermiculations in painted caves: New inputs from laboratory experiments and field observations
    Freydier, Perrine
    Weber, Eric
    Martin, Jerome
    Jeannin, Pierre-Yves
    Guerrier, Beatrice
    Doumenc, Frederic
    INTERNATIONAL JOURNAL OF SPELEOLOGY, 2021, 50 (03) : 289 - 299
  • [39] Nitrate and Phosphate Leaching from Aridisols and Entisols: Laboratory Studies and Field Observations
    Mahmood-Ul-Hassan, M.
    Rashid, M.
    Akhtar, M. S.
    Rafique, E.
    SOIL & SEDIMENT CONTAMINATION, 2010, 19 (03): : 261 - 276
  • [40] Field and laboratory observations on terrestrial planarians from modified habitats in New Zealand
    Yeates, GW
    Boag, B
    Johns, PM
    PEDOBIOLOGIA, 1998, 42 (5-6) : 554 - 562