Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations

被引:61
|
作者
Bhandari, Janarjan [1 ,2 ]
China, Swarup [1 ,2 ,4 ]
Chandrakar, Kamal Kant [1 ,2 ]
Kinney, Greg [1 ,2 ]
Cantrell, Will [1 ,2 ]
Shaw, Raymond A. [1 ,2 ]
Mazzoleni, Lynn R. [1 ,3 ]
Girotto, Giulia [1 ,2 ]
Sharma, Noopur [1 ,2 ,4 ]
Gorkowski, Kyle [1 ,2 ,5 ,9 ]
Gilardoni, Stefania [6 ]
Decesari, Stefano [6 ]
Facchini, Maria Cristina [6 ]
Zanca, Nicola [6 ,15 ,16 ]
Pavese, Giulia [7 ]
Esposito, Francesco [8 ]
Dubey, Manvendra K. [9 ]
Aiken, Allison C. [9 ]
Chakrabarty, Rajan K. [10 ]
Moosmueller, Hans [11 ]
Onasch, Timothy B. [12 ]
Zaveri, Rahul A. [4 ]
Scarnato, Barbara, V [13 ]
Fialho, Paulo [14 ]
Mazzoleni, Claudio [1 ,2 ]
机构
[1] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA
[4] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[5] McGill Univ, Atmospher & Ocean Sci, Montreal, PQ, Canada
[6] Inst Atmospher Sci & Climate CNR ISAC, Rome, Italy
[7] Inst Methodol Environm Anal CNR IMAA, Rome, Italy
[8] Univ Basilicata, Sch Engn, Potenza, Italy
[9] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA
[10] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63110 USA
[11] Desert Res Inst, Reno, NV USA
[12] Aerodyne Res Inc, Billerica, MA USA
[13] DNV GL, Hovik, Norway
[14] Univ Azores, Inst Invest Vulcanol & Avaliacao Riscos IVAR, Azores, Portugal
[15] Univ Helsinki, Dept Chem, Helsinki, Finland
[16] Univ Helsinki, Inst Atmospher & Earth Syst Res INAR, Helsinki, Finland
基金
美国国家科学基金会;
关键词
AEROSOL LIGHT-ABSORPTION; BLACK CARBON PARTICLES; MIXING STATE; DROPLET ACTIVATION; OPTICAL-PROPERTIES; FRACTAL DIMENSION; ORGANIC-COMPOUNDS; PART; MORPHOLOGY; SIZE;
D O I
10.1038/s41598-019-48143-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations
    Janarjan Bhandari
    Swarup China
    Kamal Kant Chandrakar
    Greg Kinney
    Will Cantrell
    Raymond A. Shaw
    Lynn R. Mazzoleni
    Giulia Girotto
    Noopur Sharma
    Kyle Gorkowski
    Stefania Gilardoni
    Stefano Decesari
    Maria Cristina Facchini
    Nicola Zanca
    Giulia Pavese
    Francesco Esposito
    Manvendra K. Dubey
    Allison C. Aiken
    Rajan K. Chakrabarty
    Hans Moosmüller
    Timothy B. Onasch
    Rahul A. Zaveri
    Barbara V. Scarnato
    Paulo Fialho
    Claudio Mazzoleni
    Scientific Reports, 9
  • [2] Superpave® laboratory compaction versus field compaction
    Peterson, RL
    Mahboub, KC
    Anderson, RM
    Masad, E
    Tashman, L
    BITUMINOUS PAVING MIXTURES 2003: MATERIALS AND CONSTRUCTION, 2003, (1832): : 201 - 208
  • [3] Fog/cloud processing of atmospheric aerosols from a single particle perspective: A review of field observations
    Zhang, Guohua
    Peng, Xiaocong
    Sun, Wei
    Yang, Yuxiang
    Liu, Dantong
    Shi, Zongbo
    Tang, Mingjin
    Wang, Xinming
    Bi, Xinhui
    ATMOSPHERIC ENVIRONMENT, 2024, 329
  • [4] Revealing Topsoil Behavior to Compaction from Mining Field Observations
    Richer-de-Forges, Anne C.
    Arrouays, Dominique
    Libohova, Zamir
    Chen, Songchao
    Beaudette, Dylan E.
    Bourennane, Hocine
    LAND, 2024, 13 (07)
  • [5] Towards smart compaction: Particle movement characteristics from laboratory to the field
    Wang, Xue
    Shen, Shihui
    Huang, Hai
    Zhang, Zhidong
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 218 : 323 - 332
  • [6] Laboratory and field compaction of warm rubberized mixes
    Gandhi, Tejash
    Wurst, Trey
    Rice, Courtney
    Milar, Brandon
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 67 : 285 - 290
  • [7] Field observations of SIV in cloud
    Cape, JN
    McFadyen, GG
    Storeton-West, RL
    Choularton, TW
    Gallagher, MW
    Bower, KN
    Lee, DS
    Dore, C
    Berner, A
    ATMOSPHERIC RESEARCH, 1999, 50 (3-4) : 345 - 358
  • [8] Observations and modelling of the processing of aerosol by cloud
    Choularton, TW
    Bower, KN
    Gallagher, MW
    Wells, M
    Wiedensohler, A
    Berner, A
    Cape, N
    Fuzzi, S
    Hansson, H
    Swietlicki, E
    PROCEEDINGS OF EUROTRAC SYMPOSIUM '96 - TRANSPORT AND TRANSFORMATION OF POLLUTANTS IN THE TROPOSPHERE, VOL 1: CLOUDS, AEROSOLS, MODELLING AND PHOTO-OXIDANTS, 1997, : 147 - 150
  • [9] Oxidative aging and cloud condensation nuclei activation of laboratory combustion soot
    Lambe, A.T.
    Ahern, A.T.
    Wright, J.P.
    Croasdale, D.R.
    Davidovits, P.
    Onasch, T.B.
    Journal of Aerosol Science, 2015, 79 : 31 - 39
  • [10] Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction
    King Fahd Univ of Petroleum and, Minerals, Dhahran, Saudi Arabia
    Constr Build Mater, 6-7 (373-384):