On the Number of Limit Cycles in Diluted Neural Networks

被引:5
|
作者
Hwang, Sungmin [1 ]
Lanza, Enrico [2 ]
Parisi, Giorgio [3 ]
Rocchi, Jacopo [1 ]
Ruocco, Giancarlo [4 ]
Zamponi, Francesco [5 ]
机构
[1] Univ Paris Sud 11, UMR 8626 CNRS, LPTMS, Bat 100, F-91405 Orsay, France
[2] Sapienza Univ Roma, Dipartimento Biotecnol Cellulari & Ematol, Ple A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[4] Fdn Ist Italiano Tecnol IIT, Ctr Life Nano Sci, Viale Regina Elena 291, I-00161 Rome, Italy
[5] Univ PSL, Sorbonne Univ, Univ Paris, Lab Phys,Ecole Normale Super,ENS,CNRS, F-75005 Paris, France
关键词
Neural networks; Spin glass; Dynamics; Belief propagation; Memory patterns; SPIN-GLASS; ATTRACTORS; DYNAMICS; CHAOS; CONNECTIVITY; SYSTEMS;
D O I
10.1007/s10955-020-02664-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the storage properties of temporal patterns, i.e. cycles of finite lengths, in neural networks represented by (generally asymmetric) spin glasses defined on random graphs. Inspired by the observation that dynamics on sparse systems has more basins of attractions than the dynamics of densely connected ones, we consider the attractors of a greedy dynamics in sparse topologies, considered as proxy for the stored memories. We enumerate them using numerical simulations and extend the analysis to large systems sizes using belief propagation. We find that the logarithm of the number of such cycles is a non monotonic function of the mean connectivity and we discuss the similarities with biological neural networks describing the memory capacity of the hippocampus.
引用
收藏
页码:2304 / 2321
页数:18
相关论文
共 50 条
  • [41] CAPACITY OF DILUTED MULTISTATE NEURAL NETWORKS
    BOLLE, D
    VANMOURIK, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04): : 1151 - 1161
  • [42] ON THE NUMBER OF LIMIT-CYCLES IN QUADRATIC SYSTEMS
    ROMANOVSKII, VG
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1987, (02): : 129 - 130
  • [43] SIMULATING HIGHLY DILUTED NEURAL NETWORKS
    ARENZON, JJ
    LEMKE, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (15): : 5161 - 5165
  • [44] CHAOS IN HIGHLY DILUTED NEURAL NETWORKS
    TIROZZI, B
    TSODYKS, M
    EUROPHYSICS LETTERS, 1991, 14 (08): : 727 - 732
  • [45] On the number of limit cycles of a class of polynomial differential systems
    Llibre, Jaume
    Valls, Claudia
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2144): : 2347 - 2360
  • [46] Is there a limit for the number of in vitro fertilization cycles for an individual patient?
    Homburg, Roy
    Meltcer, Simion
    Rabinson, Jacob
    Scharf, Shimon
    Anteby, Eyal Y.
    Orvieto, Raoul
    FERTILITY AND STERILITY, 2009, 91 (04) : 1329 - 1331
  • [47] On the number of limit cycles of planar quadratic vector fields
    Fishkin, A. Yu.
    DOKLADY MATHEMATICS, 2009, 80 (02) : 728 - 730
  • [48] Exact number of limit cycles for a family of rigid systems
    Gasull, A
    Torregrosa, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 751 - 758
  • [49] ESTIMATES ON THE NUMBER OF LIMIT CYCLES OF A GENERALIZED ABEL EQUATION
    Alkoumi, Naeem M. H.
    Torres, Pedro J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (01) : 25 - 34
  • [50] On the number of limit cycles of planar quadratic vector fields
    A. Yu. Fishkin
    Doklady Mathematics, 2009, 80 : 728 - 730