Fluorescence in Rhoda- and Iridacyclopentadienes Neglecting the Spin-Orbit Coupling of the Heavy Atom: The Ligand Dominates

被引:31
|
作者
Steffen, Andreas [1 ]
Costuas, Karine [2 ]
Boucekkine, Abdou [2 ]
Thibault, Marie-Helene [3 ]
Beeby, Andrew [3 ]
Batsanov, Andrei S. [3 ]
Charaf-Eddin, Azzam [4 ]
Jacquemin, Denis [4 ,5 ]
Halet, Jean-Francois [2 ]
Marder, Todd B. [1 ,3 ]
机构
[1] Univ Wurzburg, Inst Anorgan Chem, D-97074 Wurzburg, Germany
[2] Univ Rennes 1, Inst Sci Chim Rennes, CNRS, UMR 6226, F-35042 Rennes, France
[3] Univ Durham, Dept Chem, Durham DH1 3LE, England
[4] Univ Nantes, CEISAM, CNRS, UMR 6230, F-44322 Nantes 3, France
[5] Inst Univ France, F-75005 Paris 05, France
基金
欧洲研究理事会;
关键词
GENERALIZED GRADIENT APPROXIMATION; EXCITED-STATE LIFETIMES; PI-CONJUGATED SYSTEMS; RHODIUM(III) COMPLEXES; COORDINATION-COMPOUNDS; CHARGE-TRANSFER; CYCLOMETALATED PLATINUM(II); FEMTOSECOND FLUORESCENCE; ELECTROCHEMICAL-BEHAVIOR; PHOTOPHYSICAL PROPERTIES;
D O I
10.1021/ic501115k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We present a detailed photophysical study and theoretical analysis of 2,5-bis(arylethynyl)rhodacyclopenta-2,4-dienes (1a-c and 2a-c) and a 2,5-bis(arylethynyl)-iridacyclopenta-2,4-diene (3). Despite the presence of heavy atoms, these systems display unusually intense fluorescence from the Si excited state and no phosphorescence from T-1. The S-1 -> T-1 intersystem crossing (ISC) is remarkably slow with a rate constant of 10(8) s(-1) (i.e., on the nanosecond time scale). Traditionally, for organometallic systems bearing 4d or 5d metals, ISC is 2-3 orders of magnitude faster. Emission lifetime measurements suggest that the title compounds undergo S-1 -> T-1 interconversion mainly via a thermally activated ISC channel above 233 K. The associated experimental activation energy is found to be Delta H-ISC(double dagger) = 28 kJ mol(-1) (2340 cm(-1)) for 1a, which is supported by density functional theory (DFT) and time-dependent DFT calculations [Delta H-ISC(double dagger)(calc.) = 11 kJ mol(-1) (920 cm(-1)) for 1a-H]. However, below 233 K a second, temperature-independent ISC process via spin-orbit coupling occurs. The calculated lifetime for this S-1 -> T-1 ISC process is 1.1 s, indicating that although this is the main path for triplet state formation upon photoexcitation in common organometallic luminophores, it plays a minor role in our Rh compounds. Thus, the organic pi-chromophore ligand seems to neglect the presence of the heavy rhodium or iridium atom, winning control over the excited-state photophysical behavior. This is attributed to a large energy separation of the ligand-centered highest occupied molecular orbital (HOMO) and lowest unoccupied MO (LUMO) from the metal-centered orbitals. The lowest excited states S-1 and T-1 arise exclusively from a HOMO-to-LUMO transition. The weak metal participation and the cumulenic distortion of the T-1 state associated with a large S-1-T-1 energy separation favor an "organic-like" photophysical behavior.
引用
收藏
页码:7055 / 7069
页数:15
相关论文
共 50 条
  • [41] Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained
    Vicha, Jan
    Komorovsky, Stanislav
    Repisky, Michal
    Marek, Radek
    Straka, Michal
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (06) : 3025 - 3039
  • [42] Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets
    Tartaglia, Thomas A.
    Tang, Joseph N.
    Lado, Jose L.
    Bahrami, Faranak
    Abramchuk, Mykola
    McCandless, Gregory T.
    Doyle, Meaghan C.
    Burch, Kenneth S.
    Ran, Ying
    Chan, Julia Y.
    Tafti, Fazel
    SCIENCE ADVANCES, 2020, 6 (30)
  • [43] EXTERNAL HEAVY-ATOM SPIN-ORBIT COUPLING - T1 VIBRONIC ACTIVITY OF NAPHTHALENE IN PARA-DIHALOGENATED BENZENE HOST CRYSTALS
    GASH, BW
    COLSON, SD
    JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (07): : 3528 - 3533
  • [44] Potential energy curves and spin-orbit coupling of light alkali-heavy rare gas molecules
    Galbis, E.
    Douady, J.
    Jacquet, E.
    Giglio, E.
    Gervais, B.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (01):
  • [45] Two-dimensional hydrogen-like atom in magnetic field in the presence of Rashba spin-orbit coupling
    Poszwa, A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 124
  • [46] Spin-orbit coupling mediated photon-like resonance for a single atom trapped in a symmetric double well
    Fan, Changwei
    Hu, Xiaoxiao
    Yan, Xin
    Wu, Hongzheng
    Li, Zhiqiang
    Xiao, Jinpeng
    Chen, Yajiang
    Luo, Xiaobing
    NEW JOURNAL OF PHYSICS, 2024, 26 (12):
  • [47] Spin-Orbit Coupling and Metal-Ligand Interactions in Fe(II), Ru(II), and Os(II) Complexes
    Johansson, Erik M. J.
    Odelius, Michael
    Plogmaker, Stefan
    Gorgoi, Mihaela
    Svensson, Svante
    Siegbahn, Hans
    Rensmo, Hakan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (22): : 10314 - 10322
  • [48] Resolved high Rydberg spectroscopy of benzene•rare gas van der Waals clusters:: Enhancement of spin-orbit coupling in the radical cation by an external heavy atom
    Siglow, K
    Neuhauser, R
    Neusser, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (12): : 5589 - 5599
  • [49] Interplay Between Spin-Orbit Coupling and Structural Deformations in Heavy Transition-Metal Oxides with Tetrahedral Coordination
    Forte, F.
    Guerra, D.
    Avella, A.
    Autieri, C.
    Romano, A.
    Noce, C.
    ACTA PHYSICA POLONICA A, 2018, 133 (03) : 394 - 397
  • [50] Coupled-cluster method for open-shell heavy-element systems with spin-orbit coupling
    Cao, Zhanli
    Wang, Fan
    Yang, Mingli
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (13):