Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm

被引:8
|
作者
Purkayastha, Subhanik [1 ]
Zhao, Yijun [2 ]
Wu, Jing [2 ]
Hu, Rong [8 ]
McGirr, Aidan [4 ]
Singh, Sukhdeep [4 ]
Chang, Ken [5 ]
Huang, Raymond Y. [6 ]
Zhang, Paul J. [7 ]
Silva, Alvin [4 ]
Soulen, Michael C. [3 ]
Stavropoulos, S. William [3 ]
Zhang, Zishu [2 ]
Bai, Harrison X. [1 ]
机构
[1] Brown Univ, Rhode Isl Hosp, Dept Diagnost Imaging, Alpert Med Sch, Providence, RI 02905 USA
[2] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha, Peoples R China
[3] Hosp Univ Penn, Dept Radiol, Div Intervent Radiol, 3400 Spruce St, Philadelphia, PA 19104 USA
[4] Mayo Clin, Dept Radiol, Phoenix, AZ USA
[5] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA USA
[6] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[7] Hosp Univ Penn, Dept Pathol, Philadelphia, PA 19104 USA
[8] Cent South Univ, Sch Comp Sci & Engn, Changsha, Hunan, Peoples R China
基金
美国国家卫生研究院;
关键词
RADIOMICS; PREDICTION; MODEL; FEATURES;
D O I
10.1038/s41598-020-76132-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I-II) from high-grade (Fuhrman III-IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 lesions with information on Fuhrman grade from 4 institutions were divided into training and test sets with an 8:2 split for model development and internal validation. Another 43 lesions from a separate institution were set aside for independent external validation. The performance of TPOT (Tree-Based Pipeline Optimization Tool), an automatic machine learning pipeline optimizer, was compared to hand-optimized machine learning pipeline. The best-performing hand-optimized pipeline was a Bayesian classifier with Fischer Score feature selection, achieving an external validation ROC AUC of 0.59 (95% CI 0.49-0.68), accuracy of 0.77 (95% CI 0.68-0.84), sensitivity of 0.38 (95% CI 0.29-0.48), and specificity of 0.86 (95% CI 0.78-0.92). The best-performing TPOT pipeline achieved an external validation ROC AUC of 0.60 (95% CI 0.50-0.69), accuracy of 0.81 (95% CI 0.72-0.88), sensitivity of 0.12 (95% CI 0.14-0.30), and specificity of 0.97 (95% CI 0.87-0.97). Automated machine learning pipelines can perform equivalent to or better than hand-optimized pipeline on an external validation test non-invasively predicting Fuhrman grade of renal cell carcinoma using conventional MRI.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma
    Nassiri, Nima
    Maas, Marissa
    Cacciamani, Giovanni
    Varghese, Bino
    Hwang, Darryl
    Lei, Xiaomeng
    Aron, Monish
    Desai, Mihir
    Oberai, Assad A.
    Cen, Steven Y.
    Gill, Inderbir S.
    Duddalwar, Vinay A.
    EUROPEAN UROLOGY FOCUS, 2022, 8 (04): : 988 - 994
  • [32] Machine-Learning-Based Classification of Low-Grade and High-Grade Glioblastoma Using Radiomic Features in Multiparametric MRI
    Cui, G.
    Jeong, J.
    Lei, Y.
    Wang, T.
    Dong, X.
    Liu, T.
    Curran, W.
    Mao, H.
    Yang, X.
    MEDICAL PHYSICS, 2018, 45 (06) : E617 - E617
  • [33] Utility of the Apparent Diffusion Coefficient for Distinguishing Clear Cell Renal Cell Carcinoma of Low and High Nuclear Grade
    Taneja, Samir S.
    JOURNAL OF UROLOGY, 2011, 185 (06): : 2099 - 2099
  • [34] Utility of the Apparent Diffusion Coefficient for Distinguishing Clear Cell Renal Cell Carcinoma of Low and High Nuclear Grade
    Rosenkrantz, Andrew B.
    Niver, Benjamin E.
    Fitzgerald, Erin F.
    Babb, James S.
    Chandarana, Hersh
    Melamed, Jonathan
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (05) : W344 - W351
  • [35] Mucinous spindle and tubular renal cell carcinoma: analysis of chromosomal aberration pattern of low-grade, high-grade, and overlapping morphologic variant with papillary renal cell carcinoma
    Peckova, Kvetoslava
    Martinek, Petr
    Sperga, Maris
    Montiel, Delia Perez
    Daum, Ondrej
    Rotterova, Pavia
    Kalusova, Kristyna
    Hora, Milan
    Pivovarcikova, Kristyna
    Rychly, Boris
    Vranic, Semir
    Davidson, Whitney
    Vodicka, Josef
    Dubova, Magdalena
    Michal, Michal
    Hes, Ondrej
    ANNALS OF DIAGNOSTIC PATHOLOGY, 2015, 19 (04) : 226 - 231
  • [36] MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors
    Wang, Ruiting
    Zhong, Lianting
    Zhu, Pingyi
    Pan, Xianpan
    Chen, Lei
    Zhou, Jianjun
    Ding, Yuqin
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2024, 13
  • [37] PAX-8 Based Machine Learning Nuclear Model Better Stratifies Nuclear Grade in Clear Cell Renal Cell Carcinoma
    He, Lin
    Perny, Averi
    Zhong, Hua
    Rajaram, Satwik
    Kapur, Payal
    LABORATORY INVESTIGATION, 2023, 103 (03) : S740 - S742
  • [38] Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade
    Shu, Jun
    Wen, Didi
    Xi, Yibin
    Xia, Yuwei
    Cai, Zhengting
    Xu, Wanni
    Meng, Xiaoli
    Liu, Bao
    Yin, Hong
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
  • [39] The value of blood oxygenation level-dependent (BOLD) MR in differentiation of fumarate hydratase-deficient renal cell carcinoma and high-grade clear cell renal cell carcinoma
    Zhao, F.
    He, C.
    Chen, Y.
    Xu, H.
    Liu, H.
    Xu, N.
    Sun, G.
    Yao, J.
    Zeng, H.
    ANNALS OF ONCOLOGY, 2024, 35 : S1523 - S1523
  • [40] Renal pelvic washings in diagnosing low and high grade transitional cell carcinoma (TCC) of the renal pelvis: A comprehensive study.
    Witte, D
    Truong, L
    Ramzy, I
    LABORATORY INVESTIGATION, 1999, 79 (01) : 53A - 53A