Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm

被引:8
|
作者
Purkayastha, Subhanik [1 ]
Zhao, Yijun [2 ]
Wu, Jing [2 ]
Hu, Rong [8 ]
McGirr, Aidan [4 ]
Singh, Sukhdeep [4 ]
Chang, Ken [5 ]
Huang, Raymond Y. [6 ]
Zhang, Paul J. [7 ]
Silva, Alvin [4 ]
Soulen, Michael C. [3 ]
Stavropoulos, S. William [3 ]
Zhang, Zishu [2 ]
Bai, Harrison X. [1 ]
机构
[1] Brown Univ, Rhode Isl Hosp, Dept Diagnost Imaging, Alpert Med Sch, Providence, RI 02905 USA
[2] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha, Peoples R China
[3] Hosp Univ Penn, Dept Radiol, Div Intervent Radiol, 3400 Spruce St, Philadelphia, PA 19104 USA
[4] Mayo Clin, Dept Radiol, Phoenix, AZ USA
[5] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA USA
[6] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[7] Hosp Univ Penn, Dept Pathol, Philadelphia, PA 19104 USA
[8] Cent South Univ, Sch Comp Sci & Engn, Changsha, Hunan, Peoples R China
基金
美国国家卫生研究院;
关键词
RADIOMICS; PREDICTION; MODEL; FEATURES;
D O I
10.1038/s41598-020-76132-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I-II) from high-grade (Fuhrman III-IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 lesions with information on Fuhrman grade from 4 institutions were divided into training and test sets with an 8:2 split for model development and internal validation. Another 43 lesions from a separate institution were set aside for independent external validation. The performance of TPOT (Tree-Based Pipeline Optimization Tool), an automatic machine learning pipeline optimizer, was compared to hand-optimized machine learning pipeline. The best-performing hand-optimized pipeline was a Bayesian classifier with Fischer Score feature selection, achieving an external validation ROC AUC of 0.59 (95% CI 0.49-0.68), accuracy of 0.77 (95% CI 0.68-0.84), sensitivity of 0.38 (95% CI 0.29-0.48), and specificity of 0.86 (95% CI 0.78-0.92). The best-performing TPOT pipeline achieved an external validation ROC AUC of 0.60 (95% CI 0.50-0.69), accuracy of 0.81 (95% CI 0.72-0.88), sensitivity of 0.12 (95% CI 0.14-0.30), and specificity of 0.97 (95% CI 0.87-0.97). Automated machine learning pipelines can perform equivalent to or better than hand-optimized pipeline on an external validation test non-invasively predicting Fuhrman grade of renal cell carcinoma using conventional MRI.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm
    Subhanik Purkayastha
    Yijun Zhao
    Jing Wu
    Rong Hu
    Aidan McGirr
    Sukhdeep Singh
    Ken Chang
    Raymond Y. Huang
    Paul J. Zhang
    Alvin Silva
    Michael C. Soulen
    S. William Stavropoulos
    Zishu Zhang
    Harrison X. Bai
    Scientific Reports, 10
  • [2] Deep Learning Based on MRI for Differentiation of Low- and High-Grade in Low-Stage Renal Cell Carcinoma
    Zhao, Yijun
    Chang, Marcello
    Wang, Robin
    Xi, Ianto Lin
    Chang, Ken
    Huang, Raymond Y.
    Vallieres, Martin
    Habibollahi, Peiman
    Dagli, Mandeep S.
    Palmer, Matthew
    Zhang, Paul J.
    Silva, Alvin C.
    Yang, Li
    Soulen, Michael C.
    Zhang, Zishu
    Bai, Harrison X.
    Stavropoulos, S. William
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (05) : 1542 - 1549
  • [3] Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI
    Mazin, Asim
    Hawkins, Samuel H.
    Stringfield, Olya
    Dhillon, Jasreman
    Manley, Brandon J.
    Jeong, Daniel K.
    Raghunand, Natarajan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI
    Asim Mazin
    Samuel H. Hawkins
    Olya Stringfield
    Jasreman Dhillon
    Brandon J. Manley
    Daniel K. Jeong
    Natarajan Raghunand
    Scientific Reports, 11
  • [5] Differentiation of low grade from high grade clear cell renal cell carcinoma neoplasms using a CAD algorithm on four-phase CT
    Coy, Heidi
    Douek, Michael
    Young, Jonathan
    Brown, Matthew S.
    Goldin, Jonathan
    Sayre, James
    Raman, Steven
    JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (15)
  • [6] MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study
    Stanzione, Arnaldo
    Ricciardi, Carlo
    Cuocolo, Renato
    Romeo, Valeria
    Petrone, Jessica
    Sarnataro, Michela
    Mainenti, Pier Paolo
    Improta, Giovanni
    De Rosa, Filippo
    Insabato, Luigi
    Brunetti, Arturo
    Maurea, Simone
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 879 - 887
  • [7] MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study
    Arnaldo Stanzione
    Carlo Ricciardi
    Renato Cuocolo
    Valeria Romeo
    Jessica Petrone
    Michela Sarnataro
    Pier Paolo Mainenti
    Giovanni Improta
    Filippo De Rosa
    Luigi Insabato
    Arturo Brunetti
    Simone Maurea
    Journal of Digital Imaging, 2020, 33 : 879 - 887
  • [8] Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma
    F. Cornelis
    E. Tricaud
    A. S. Lasserre
    F. Petitpierre
    J. C. Bernhard
    Y. Le Bras
    M. Yacoub
    M. Bouzgarrou
    A. Ravaud
    N. Grenier
    European Radiology, 2015, 25 : 24 - 31
  • [9] Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma
    Cornelis, F.
    Tricaud, E.
    Lasserre, A. S.
    Petitpierre, F.
    Bernhard, J. C.
    Le Bras, Y.
    Yacoub, M.
    Bouzgarrou, M.
    Ravaud, A.
    Grenier, N.
    EUROPEAN RADIOLOGY, 2015, 25 (01) : 24 - 31
  • [10] Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm
    van der Voort, Sebastian R.
    Incekara, Fatih
    Wijnenga, Maarten M. J.
    Kapas, Georgios
    Gardeniers, Mayke
    Schouten, Joost W.
    Starmans, Martijn P. A.
    Tewarie, Rishie Nandoe
    Lycklama, Geert J.
    French, Pim J.
    Dubbink, Hendrikus J.
    van den Bent, Martin J.
    Vincent, Arnaud J. P. E.
    Niessen, Wiro J.
    Klein, Stefan
    Smits, Marion
    CLINICAL CANCER RESEARCH, 2019, 25 (24) : 7455 - 7462