Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach

被引:84
|
作者
Ahmadi, Mehdi [1 ,3 ]
Foladivanda, Majid [3 ]
Jaafarzadeh, Nemat [1 ,3 ]
Ramezani, Zahra [2 ]
Ramavandi, Bahman [4 ]
Jorfi, Sahand [1 ,3 ]
Kakavandi, Babak [1 ,3 ,5 ]
机构
[1] Ahvaz Jundishapur Univ Med Sci, Environm Technol Res Ctr, Ahvaz, Iran
[2] Ahvaz Jundishapur Univ Med Sci, Nanotechnol Res Ctr, Ahvaz, Iran
[3] Ahvaz Jundishapur Univ Med Sci, Dept Environm Hlth Engn, Ahvaz, Iran
[4] Bushehr Univ Med Sci, Dept Environm Hlth Engn, Ahvaz, Iran
[5] Ahvaz Jundishapur Univ Med Sci, Student Res Comm, Ahvaz, Iran
来源
JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA | 2017年 / 66卷 / 02期
关键词
adsorption; cadmium; chitosan; magnetic composite; ZVI nanoparticles; OXIDE MAGNETIC COMPOSITES; ACTIVATED CARBON; AQUEOUS-SOLUTION; HEAVY-METALS; HUMIC-ACID; ADSORPTION; WATER; IONS; ADSORBENT; CHROMIUM;
D O I
10.2166/aqua.2017.027
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Herein, chitosan (CS) impregnated with nanoparticles of zero-valent iron (NZVI) was fabricated onto a magnetic composite of CS@NZVI as an adsorbent for cadmium (Cd2+) removal from aqueous solution. The characteristics of CS@NZVI were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, CHONS and Brunauer, Emmett and Teller techniques. The average diameter of NZVI was found to be 50 nm, and it was successfully coated onto the CS. The influential experimental variables such as contact time, solution pH, adsorbent dosage and initial Cd2+ concentration were investigated to determine optimum conditions. Results revealed that with an optimum dosage rate of 0.6 g/L, Cd2+ concentration was reduced from 10 to 0.016 mg/L within 90 min reaction time at pH of 7 +/- 0.2. Experimental data were fitted to the Freundlich and pseudo-secondorder models. Maximum adsorption capacity was obtained from the Langmuir monolayer 142.8 mg/g. Desorption experiments showed that the CS@NZVI had good potential with regard to regeneration and reusability, and its adsorption activity was preserved effectively even after three successive cycles owing to its good stability. As a conclusion, CS@NZVI can be considered as an effective adsorbent for heavy metals removal from water and wastewaters, because it can be separated both quickly and easily, it has high efficiency, and it does not lead to secondary pollution.
引用
收藏
页码:116 / 130
页数:15
相关论文
共 50 条
  • [41] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Phanthasri, Jakkapop
    Grisdanurak, Nurak
    Khamdahsag, Pummarin
    Wantala, Kitirote
    Khunphonoi, Rattabal
    Wannapaiboon, Suttipong
    Tanboonchuy, Visanu
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05):
  • [42] Removal of bromate using nanoscale zero-valent iron supported on activated carbon
    Yang, Qi
    Wu, Xiu-Qiong
    Zhong, Yu
    Li, Xiao-Ming
    Deng, Xiao
    Li, Na
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2013, 40 (12): : 97 - 102
  • [43] Nanoscale zero-valent iron supported on carbon nanotubes for polychlorinated biphenyls removal
    Cao, Xiuqin
    Wang, Haoran
    Yang, Chunmiao
    Cheng, Lin
    Fu, Kunming
    Qiu, Fuguo
    DESALINATION AND WATER TREATMENT, 2020, 201 : 173 - 186
  • [44] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Jakkapop Phanthasri
    Nurak Grisdanurak
    Pummarin Khamdahsag
    Kitirote Wantala
    Rattabal Khunphonoi
    Suttipong Wannapaiboon
    Visanu Tanboonchuy
    Water, Air, & Soil Pollution, 2020, 231
  • [45] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Gaoling Wei
    Jinhua Zhang
    Jinqiu Luo
    Huajian Xue
    Deyin Huang
    Zhiyang Cheng
    Xinbai Jiang
    Frontiers of Environmental Science & Engineering, 2019, 13
  • [46] Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution
    Dong, Haoran
    Zhang, Cong
    Hou, Kunjie
    Cheng, Yujun
    Deng, Junmin
    Jiang, Zhao
    Tang, Lin
    Zeng, Guangming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 188 - 196
  • [47] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Wei, Gaoling
    Zhang, Jinhua
    Luo, Jinqiu
    Xue, Huajian
    Huang, Deyin
    Cheng, Zhiyang
    Jiang, Xinbai
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2019, 13 (04)
  • [48] Nanoscopic Zero-Valent Iron Supported on MgO for Lead Removal from Waters
    Siciliano, Alessi
    Limonti, Carlo
    WATER, 2018, 10 (04)
  • [49] Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption
    Frost, Ray L.
    Xi, Yunfei
    He, Hongping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 341 (01) : 153 - 161
  • [50] Effective removal of cadmium ions from aqueous solution using chitosan-stabilized nano zero-valent iron
    Lu, Hongfei
    Qiao, Xueliang
    Wang, Wei
    Tan, Fatang
    Sun, Fazhe
    Xiao, Zunqi
    Chen, Jianguo
    DESALINATION AND WATER TREATMENT, 2015, 56 (01) : 256 - 265