On prediction intervals for conditionally heteroscedastic processes

被引:0
|
作者
Kabila, P [1 ]
He, ZS [1 ]
机构
[1] La Trobe Univ, Bundoora, Vic, Australia
关键词
simple Markovian bilinear process;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kabaila (1999) argues that the standard 1-alpha prediction intervals for a broad class of conditionally heteroscedastic processes are justified by their possession of what he calls the 'relevance property'. He considers both the case that the parameters of the process are known and that these parameters are unknown. We consider the former case and ask whether these prediction intervals can, alternatively, be deduced from the requirements of both (a) unconditional coverage probability 1 - alpha and (b) minimum unconditional expected length. We show that the answer to this question is no, by presenting a counterexample. This counterexample concerns the standard 95% one-step-ahead prediction interval in the context of a simple Markoviau bilinear process.
引用
收藏
页码:725 / 731
页数:7
相关论文
共 50 条
  • [41] Confidence intervals for prediction intervals
    Wilcox, RR
    JOURNAL OF APPLIED STATISTICS, 2006, 33 (03) : 317 - 326
  • [42] On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods
    Li, Linyuan
    Duchesne, Pierre
    Liou, Chu Pheuil
    ECONOMETRICS AND STATISTICS, 2021, 19 : 169 - 187
  • [43] Quasi-maximum Likelihood Estimation of Periodic Autoregressive, Conditionally Heteroscedastic Time Series
    Ziel, Florian
    STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 207 - 214
  • [44] Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach
    Nademi, Arash
    Farnoosh, Rahman
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (02) : 275 - 293
  • [45] Sieve Bootstrap Prediction Intervals for Contamined BIP-ARMA Processes
    Ulloa, Gustavo
    Allende, Hector
    2012 31ST INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC 2012), 2012, : 241 - 244
  • [46] Confidence intervals for two robust regression lines with a heteroscedastic error term
    Wilcox, RR
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1996, 49 : 163 - 170
  • [47] Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes
    Lazaro-Gredilla, Miguel
    Titsias, Michalis K.
    Verrelst, Jochem
    Camps-Valls, Gustavo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (04) : 838 - 842
  • [48] Conditionally Independent Multiresolution Gaussian Processes
    Taghia, Jalil
    Schon, Thomas B.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [49] A COMBINED APPROACH TO MODELING NONSTATIONARY HETEROSCEDASTIC PROCESSES
    Tymoshchuk, O. L.
    Huskova, V. H.
    Bidyuk, P., I
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2019, (02) : 80 - 89
  • [50] Prediction intervals via consonance intervals
    LaMotte, LR
    Volaufová, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1999, 48 : 419 - 424