On prediction intervals for conditionally heteroscedastic processes

被引:0
|
作者
Kabila, P [1 ]
He, ZS [1 ]
机构
[1] La Trobe Univ, Bundoora, Vic, Australia
关键词
simple Markovian bilinear process;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kabaila (1999) argues that the standard 1-alpha prediction intervals for a broad class of conditionally heteroscedastic processes are justified by their possession of what he calls the 'relevance property'. He considers both the case that the parameters of the process are known and that these parameters are unknown. We consider the former case and ask whether these prediction intervals can, alternatively, be deduced from the requirements of both (a) unconditional coverage probability 1 - alpha and (b) minimum unconditional expected length. We show that the answer to this question is no, by presenting a counterexample. This counterexample concerns the standard 95% one-step-ahead prediction interval in the context of a simple Markoviau bilinear process.
引用
收藏
页码:725 / 731
页数:7
相关论文
共 50 条
  • [1] Prediction intervals in conditionally heteroscedastic time series with stochastic components
    Pellegrini, Santiago
    Ruiz, Esther
    Espasa, Antoni
    INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (02) : 308 - 319
  • [2] Streamflow Intervals Prediction Using Coupled Autoregressive Conditionally Heteroscedastic With Bootstrap Model
    Bickici, Bugrayhan
    Beyaztas, Beste Hamiye
    Yaseen, Zaher Mundher
    Beyaztas, Ufuk
    Kahya, Ercan
    JOURNAL OF FLOOD RISK MANAGEMENT, 2025, 18 (01):
  • [3] Optimal predictions of powers of conditionally heteroscedastic processes
    Francq, Christian
    Zakoian, Jean-Michel
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (02) : 345 - 367
  • [4] On construction of prediction intervals for heteroscedastic regression
    Wu, Yun
    Xiong, Shifeng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (06) : 2940 - 2965
  • [5] Forecasting Markov-switching dynamic, conditionally heteroscedastic processes
    Davidson, J
    STATISTICS & PROBABILITY LETTERS, 2004, 68 (02) : 137 - 147
  • [6] Prediction intervals with controlled length in the heteroscedastic Gaussian regression
    Denis, Christophe
    Hebiri, Mohamed
    Zaoui, Ahmed
    STATISTICS, 2025, 59 (01) : 81 - 112
  • [7] Conditionally heteroscedastic intensity-dependent marking of log Gaussian Cox processes
    Myllymaki, Mari
    Penttinen, Antti
    STATISTICA NEERLANDICA, 2009, 63 (04) : 450 - 473
  • [8] Improved prediction intervals in heteroscedastic mixed-effects models
    Mathew, Thomas
    Menon, Sandeep
    Perevozskaya, Inna
    Weerahandi, Samaradasa
    STATISTICS & PROBABILITY LETTERS, 2016, 114 : 48 - 53
  • [9] ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS
    Chan, Kung-Sik
    Li, Dong
    Ling, Shiqing
    Tong, Howell
    STATISTICA SINICA, 2014, 24 (02) : 625 - 652
  • [10] Generalized least squares estimation for explosive AR(1) processes with conditionally heteroscedastic errors
    Hwang, S. Y.
    Kim, S.
    Lee, S. D.
    Basawa, I. V.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (13) : 1439 - 1448