Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states

被引:136
|
作者
Adesso, G. [1 ,2 ,3 ,4 ,5 ]
Dell'Anno, F. [1 ,2 ,3 ,4 ]
De Siena, S. [1 ,2 ,3 ,4 ]
Illuminati, F. [1 ,2 ,3 ,4 ,6 ]
Souza, L. A. M. [1 ,2 ,3 ,4 ,7 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] CNR INFM Coherentia, Naples, Italy
[3] CNISM, Unita Salerno, I-84084 Salerno, Italy
[4] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, I-84084 Salerno, Italy
[5] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[6] ISI Fdn Sci Interchange, I-10133 Turin, Italy
[7] Univ Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, BR-30161970 Belo Horizonte, MG, Brazil
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 04期
关键词
boson systems; Gaussian processes; quantum optics; quantum theory; PHOTON NUMBER STATES; DETERMINISTIC GENERATION;
D O I
10.1103/PhysRevA.79.040305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small or very large losses, we prove that Fock states at any fixed photon number saturate the bound unconditionally for any value of the loss. In the relevant regime of low-energy probes, we demonstrate that superpositions of the first low-lying Fock states yield an absolute improvement over any Gaussian probe. Such few-photon states can be recast quite generally as truncations of de-Gaussified photon-subtracted states.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Nonlinear and non-Gaussian state estimation: A quasi-optimal estimator
    Tanizaki, H
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (12) : 2805 - 2834
  • [32] Statistical estimation of optimal portfolios for non-Gaussian dependent returns of assets
    Shiraishi, Hiroshi
    Taniguchi, Masanobu
    JOURNAL OF FORECASTING, 2008, 27 (03) : 193 - 215
  • [33] Non-Gaussian ancilla states for continuous variable quantum computation via Gaussian maps
    Ghose, Shohini
    Sanders, Barry C.
    JOURNAL OF MODERN OPTICS, 2007, 54 (06) : 855 - 869
  • [34] Preparation and non-classicality of non-Gaussian quantum states based on catalytic quantum scissors
    Zhang, Kuizheng
    Hu, Liyun
    Ye, Wei
    Liu, Cunjin
    Xu, Xuexiang
    LASER PHYSICS LETTERS, 2019, 16 (01)
  • [35] ULTIMATE RESOLUTION AND NON-GAUSSIAN PROFILES IN CRT DISPLAYS
    INFANTE, C
    PROCEEDINGS OF THE SID, 1986, 27 (04): : 275 - 280
  • [36] Entangled non-Gaussian states formed by mixing Gaussian states
    Lund, A. P.
    Ralph, T. C.
    van Loock, P.
    JOURNAL OF MODERN OPTICS, 2008, 55 (13) : 2083 - 2094
  • [37] Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble
    Lu Bo
    Han Cheng-Yin
    Zhuang Min
    Ke Yong-Guan
    Huang Jia-Hao
    Lee Chao-Hong
    ACTA PHYSICA SINICA, 2019, 68 (04)
  • [38] Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology
    Diener, Peter
    Gupt, Brajesh
    Megevand, Miguel
    Singh, Parampreet
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (16)
  • [39] Conditional preparation of non-Gaussian quantum optical states by mesoscopic measurement
    Davis, Alex O. C.
    Walschaers, Mattia
    Parigi, Valentina
    Treps, Nicolas
    NEW JOURNAL OF PHYSICS, 2021, 23 (06):
  • [40] OPTIMAL LEARNING WITH NON-GAUSSIAN REWARDS
    Ding, Zi
    Ryzhov, Ilya O.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (01) : 112 - 136