Elucidating the role of lattice thermal conductivity in π-phases of IV-VI monochalcogenides for highly efficient thermoelectric performance

被引:8
|
作者
Rehman, Sajid Ur [1 ,2 ,3 ]
Butt, Faheem K. [4 ]
Tariq, Zeeshan [2 ,3 ]
Zhang, Xiaoming [1 ,5 ]
Zheng, Jun [2 ,3 ]
Naydenov, Genadi [6 ]
Ul Haq, Bakhtiar [7 ]
Li, Chuanbo [1 ,5 ]
机构
[1] Minzu Univ China, Sch Sci, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Univ Educ Lahore, Div Sci & Technol, Dept Phys, Lahore 54770, Pakistan
[5] Minzu Univ China, Optoelect Res Ctr, Beijing, Peoples R China
[6] Univ York, Dept Phys, York, N Yorkshire, England
[7] King Khalid Univ, Dept Phys, Adv Funct Mat & Optoelect Lab AFMOL, Fac Sci, Abha, Saudi Arabia
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
pi-polymorphs; power factor; thermal conductivity; thermodynamic stability; thermoelectric properties; CUBIC PHASE; PHONON TRANSPORT; ELECTRIC-FIELD; SNSE; POWER; STRAIN; PBTE; APPROXIMATION; STABILITY; CRYSTALS;
D O I
10.1002/er.6174
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recently, an emerging new class of cubic pi-polymorphs are being pursued as cost-effective and relatively less toxic materials for thermoelectric, photovoltaic, and optoelectronic applications. Using density functional formalism and semiclassical Boltzmann transport theory, we have systematically studied the thermoelectric performance of pi-polymorphs. Hybrid functional (HSE03) is employed to realize accurate energy bandgaps, which helps to predict more accurate thermoelectric properties. The thermodynamic stability is observed by binding energies and phonon dispersions. It is observed that the Seebeck coefficients (S) are decreasing and electrical conductivities (sigma) are increasing with carrier concentration. However, thermal conductivities are showing decreasing trends which lead to ultimately increased ZT. pi-GeSe shows a high power factor similar to 16.50 mW/mK(2) among all pi-polymorphs. The figure of merit, ZT value, of pi-SnS, pi-SnSe, pi-GeS, and pi-GeSe are found to be 0.83, 1.20, 1.28, and 1.63 with optimal carrier concentration at 800 K. The present work highlights the potential of newly discovered cubic pi-polymorphs of chalcogenides for highly efficient thermoelectric materials.
引用
收藏
页码:6369 / 6382
页数:14
相关论文
共 50 条
  • [31] Reducing Lattice Thermal Conductivity of the Thermoelectric SnSe Monolayer: Role of Phonon-Electron Coupling
    Sun, Yajing
    Shuai, Zhigang
    Wang, Dong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (18): : 12001 - 12006
  • [32] High thermoelectric performance of TlInSe3 with ultra-low lattice thermal conductivity
    Yin, Xixi
    Zhou, Lang
    Wang, Qi
    Liao, Yangfang
    Lv, Bing
    FRONTIERS IN PHYSICS, 2023, 11
  • [33] Monolayer Ag2S: Ultralow Lattice Thermal Conductivity and Excellent Thermoelectric Performance
    Sharma, Sitansh
    Shafique, Aamir
    Schwingenschlogl, Udo
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 10147 - 10153
  • [34] Ultralow lattice thermal conductivity and high thermoelectric performance of monolayer KCuTe: a first principles study
    Gu, Jinjie
    Huang, Lirong
    Liu, Shengzong
    RSC ADVANCES, 2019, 9 (62) : 36301 - 36307
  • [35] Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity
    Saparamadu, Udara
    Li, Chunhua
    He, Ran
    Zhu, Hangtian
    Ren, Zhensong
    Mao, Jun
    Song, Shaowei
    Sun, Jingying
    Chen, Shuo
    Zhang, Qinyong
    Nielsch, Kornelius
    Broido, David
    Ren, Zhifeng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) : 511 - 516
  • [36] Theoretical Study of Lattice Thermal Conductivity of NbFeM (M = Sb, Bi) for Potential Thermoelectric Performance
    Keshri, Sonu Prasad
    Paul, Sayan
    Maurya, Arun K.
    Sardar, Tahir Hossain
    Pati, Swapan K.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (15) : 7965 - 7973
  • [37] Observation of Temperature Dependent Atomic Off-Centering in High Entropy Cubic I-V-VI2/IV-VI Alloys with Ultralow Thermal Conductivity
    Zhu, Huaxing
    Liu, Liyuan
    Yang, Xinyi
    Ji, Xiao
    Jana, Subhajit
    Zhang, Bin
    Wang, Guiwen
    Wu, Yimin A.
    Redshaw, Carl
    Wang, Xiyang
    Wang, Jun-Zhong
    Lu, Xu
    Zhou, Xiaoyuan
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (04)
  • [38] Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu2S monolayer
    Yu, Jiabing
    Li, Tingwei
    Nie, Ge
    Zhang, Bo-Ping
    Sun, Qiang
    NANOSCALE, 2019, 11 (21) : 10306 - 10313
  • [39] Ultralow lattice thermal conductivity and superior thermoelectric performance in AgAlS2 and AgAlSe2
    Faizan, Muhammad
    Li, Shaojie
    Liu, Zhongwei
    Li, Zewei
    Xie, Jiahao
    Zhou, Kun
    Fu, Yuhao
    Zhang, Lijun
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (06) : 2853 - 2867
  • [40] Enhancing the thermoelectric performance of SnTe-CuSbSe2 with an ultra-low lattice thermal conductivity
    Xu, Huihong
    Wan, Han
    Xu, Rui
    Hu, Zeqing
    Liang, Xiaolong
    Li, Zhou
    Song, Jiming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) : 4310 - 4318