Multilinear Calderon-Zygmund operators on Hardy spaces, II

被引:9
|
作者
Grafakos, Loukas [1 ]
He, Danqing [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Multi linear operators; Hardy spaces;
D O I
10.1016/j.jmaa.2014.02.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we explain a point left open in the literature of Hardy spaces, namely that for a sufficiently smooth m-linear Calderon-Zygmund operator bounded on a product of Lebesgue spaces we have T(f(1), ..., f(m)) = Sigma(i1) ...Sigma (im) lambda 1, i(1) ... lambda m,i(m) T(a1,i(1,...),a(m,)i(m)) a.e., where aj,i, are H-pj atoms, lambda j,i(j) is an element of C, and f(j) = Sigma(ij) lambda j,i(j) aj,i(j) are H-pj distributions. In some particular cases the proof is new even when m = 1. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 521
页数:11
相关论文
共 50 条