Inclusion relations between the Bers embeddings of Teichmuller spaces

被引:18
|
作者
Matsuzaki, K [1 ]
机构
[1] Ochanomizu Univ, Dept Math, Bunkyo Ku, Tokyo 1128610, Japan
关键词
Riemann Surface; Homotopy Class; Quadratic Differential; Fuchsian Group; Geodesic Segment;
D O I
10.1007/BF02786628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if the Bers embeddings of the Teichmuller spaces of infinitely generated Fuchsian groups are coincident, then these Fuchsian groups are the same.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [41] INCLUSION RELATIONS AMONG ORLICZ SPACES
    WELLAND, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (01) : 135 - +
  • [42] On isomorphisms of Bers fiber spaces
    Zhang, CH
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1997, 22 (02): : 255 - 274
  • [43] POLYNOMIAL DENSITY IN BERS SPACES
    BURBEA, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 62 (01) : 89 - 94
  • [44] On embeddings between classical Lorentz spaces
    Carro, M
    Pick, L
    Soria, J
    Stepanov, VD
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03): : 397 - 428
  • [45] On local comparison between various metrics on Teichmuller spaces
    Alessandrini, D.
    Liu, L.
    Papadopoulos, A.
    Su, W.
    GEOMETRIAE DEDICATA, 2012, 157 (01) : 91 - 110
  • [46] Geometric isomorphisms between infinite dimensional Teichmuller spaces
    Earle, CJ
    Gardiner, FP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) : 1163 - 1190
  • [47] On nuclearity of embeddings between Besov spaces
    Cobos, Fernando
    Dominguez, Oscar
    Kuehn, Thomas
    JOURNAL OF APPROXIMATION THEORY, 2018, 225 : 209 - 223
  • [48] Integrable Teichmuller spaces
    Guo, H
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (01): : 47 - 58
  • [49] Parametrizations of Teichmuller spaces
    Okumura, Y
    XVITH ROLF NEVANLINNA COLLOQUIUM, 1996, : 181 - 190
  • [50] Angles in Teichmuller spaces
    Yang, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (10)