Cramer rule for quaternionic linear equations in quaternionic quantum theory

被引:7
|
作者
Jiang, Tongsong [1 ]
机构
[1] Linyi Normal Univ, Dept Math, Shandong 276005, Peoples R China
[2] Shandong Univ, Dept Comp Sci & Technol, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer rule; complex representation; companion vector; quaternionic linear equation;
D O I
10.1016/S0034-4877(06)80033-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of a complex representation of a quaternion matrix and a companion vector, this paper introduces a new definition of determinant for a quaternion matrix, derives a technique of finding an inverse matrix of a quaternion invertible matrix, and gives a Cramer rule for quaternionic linear equations in quaternionic quantum theory.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 50 条
  • [21] Quaternionic perturbation theory
    De Leo, Stefano
    Alves de Souza, Caio Almeida
    Ducati, Gisele
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (03):
  • [22] TOPOLOGICAL QUANTUM-FIELD THEORY IN QUATERNIONIC GEOMETRY
    MERKULOV, S
    PEDERSEN, H
    SWANN, A
    JOURNAL OF GEOMETRY AND PHYSICS, 1994, 14 (02) : 121 - 145
  • [23] Quaternionic electroweak theory
    DeLeo, S
    Rotelli, P
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1996, 22 (08) : 1137 - 1150
  • [24] ON THE QUATERNIONIC FORM OF LINEAR-EQUATIONS FOR THE GRAVITATIONAL-FIELD
    SINGH, A
    LETTERE AL NUOVO CIMENTO, 1982, 33 (14): : 457 - 459
  • [25] Quaternionic generalization of telegraph equations
    Mironov, Victor L.
    Mironov, Sergey V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (13)
  • [26] Linear Perturbations of Quaternionic Metrics
    Sergei Alexandrov
    Boris Pioline
    Frank Saueressig
    Stefan Vandoren
    Communications in Mathematical Physics, 2010, 296 : 353 - 403
  • [27] Quaternionic triangular linear operators
    Cerejeiras, Paula
    Colombo, Fabrizio
    Kaehler, Uwe
    Sabadini, Irene
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2093 - 2116
  • [28] Stability of quaternionic linear systems
    Pereira, R
    Vettori, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (03) : 518 - 523
  • [29] Holonomy in Quaternionic Quantum Mechanics
    Jerzy Dajka
    Marek Szopa
    International Journal of Theoretical Physics, 2003, 42 : 1053 - 1057
  • [30] Linear Perturbations of Quaternionic Metrics
    Alexandrov, Sergei
    Pioline, Boris
    Saueressig, Frank
    Vandoren, Stefan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (02) : 353 - 403