Blow-up analysis and spatial asymptotic profiles of solutions to a modified two-component hyperelastic rod system

被引:0
|
作者
Wei, Long [1 ]
Zeng, Qi [1 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Two-component hyperelastic rod system; Blow-up criterion; Blow-up rate; Persistence property; SHALLOW-WATER EQUATION; CAMASSA-HOLM; WELL-POSEDNESS; GLOBAL EXISTENCE; WAVE-BREAKING; CONSERVATIVE SOLUTIONS; MODEL-EQUATIONS; CRITERIA;
D O I
10.1007/s13324-020-00444-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a modified two-component hyperelastic rod system, which is a generalization of the Camassa-Holm equation modeling shallow water waves moving over a linear shear flow. We showblow-up analysis and exact spatial asymptotic profiles of solutions to the system. Especially, for the special case gamma = 1, we present the exact blow-up rate of the breaking-wave solution.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Blow-up criteria for a two-component nonlinear dispersive wave system
    Novruzov, Emil
    Bayrak, Vural
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (12)
  • [22] Blow-up Phenomena and Persistence Properties of Solutions to the Two-Component DGH Equation
    Zhai, Panpan
    Guo, Zhengguang
    Wang, Weiming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [23] Blow-up phenomena of a weakly dissipative modified two-component Dullin-Gottwald-Holm system
    Tian, Shou-Fu
    Yang, Jin-Jie
    Li, Zhi-Qiang
    Chen, Yi-Ren
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 106
  • [24] Global Existence and Blow-Up for a Weakly Dissipative Modified Two-Component Camassa-Holm System
    Han, Xuanxuan
    Wang, Tingting
    Lu, Yibin
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [25] Blow-up for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions
    Mi, Yongsheng
    Huang, Daiwen
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 153 - 164
  • [26] Blow-up of solutions for an integrable periodic two-component Camassa-Holm system with cubic nonlinearity
    Zhu, Min
    Wang, Ying
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 7215 - 7229
  • [27] Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg-Whitham system
    Bai, Zhihao
    Wang, Yang
    Wei, Long
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (01)
  • [28] Blow-up for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions
    Yongsheng Mi
    Daiwen Huang
    [J]. Monatshefte für Mathematik, 2022, 198 : 153 - 164
  • [29] Blow-up phenomena and persistence properties for an integrable two-component peakon system
    Yang, Shaojie
    Xu, Tianzhou
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5787 - 5812
  • [30] Blow-Up Phenomena for the Periodic Two-Component Degasperis-Procesi System
    Liu, Xingxing
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (04): : 475 - 482