Long cycle of random permutations with polynomially growing cycle weights

被引:0
|
作者
Zeindler, Dirk [1 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Fylde Coll, Bailrigg, England
关键词
cycle counts; long cycles; Poisson process; random permutations; saddle point method; SAMPLING THEORY; NUMBER;
D O I
10.1002/rsa.20989
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study random permutations of n objects with respect to multiplicative measures with polynomial growing cycle weights. We determine in this paper the asymptotic behavior of the long cycles under this measure and also prove that the cumulative cycle numbers converge in the region of the long cycles to a Poisson process.
引用
收藏
页码:726 / 739
页数:14
相关论文
共 50 条
  • [41] Redei permutations with the same cycle structure
    Capaverde, Juliane
    Masuda, Ariane M.
    Rodrigues, Virginia M.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 81
  • [42] On the constructions of n-cycle permutations
    Chen, Yuting
    Wang, Liqi
    Zhu, Shixin
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
  • [43] Continued fractions for cycle-alternating permutations
    Deb, Bishal
    Sokal, Alan D.
    RAMANUJAN JOURNAL, 2024, 65 (03): : 1013 - 1060
  • [44] Enumeration of snakes and cycle-alternating permutations
    Josuat-Verges, Matthieu
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 279 - 305
  • [45] More constructions of n-cycle permutations
    Niu, Tailin
    Li, Kangquan
    Qu, Longjiang
    Sun, Bing
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 88
  • [46] Permutations with restricted cycle structure and an algorithmic application
    Beals, R
    Leedham-Green, CR
    Niemeyer, AC
    Praeger, CE
    Seress, A
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (05): : 447 - 464
  • [47] ON THE NUMBER AND CYCLE STRUCTURE OF THE PERMUTATIONS IN CERTAIN CLASSES
    PAVLOV, AI
    MATHEMATICS OF THE USSR-SBORNIK, 1984, 124 (3-4): : 521 - 540
  • [48] Sorting permutations by reversals and Eulerian cycle decompositions
    Caprara, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 91 - 110
  • [49] Finite Cycle Gibbs Measures on Permutations of Zd
    Armendariz, Ines
    Ferrari, Pablo A.
    Groisman, Pablo
    Leonardi, Florencia
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1213 - 1233
  • [50] COUNTING PERMUTATIONS WITH GIVEN CYCLE STRUCTURE AND DESCENT SET
    GESSEL, IM
    REUTENAUER, C
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 64 (02) : 189 - 215