Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes

被引:10
|
作者
Piccinini, Esteban [1 ]
Bliem, Christina [2 ]
Giussi, Juan M. [1 ]
Knoll, Wolfgang [2 ,3 ]
Azzaroni, Omar [1 ,4 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Inst Invest Fis Quim Teor & Aplicadas INIFTA, Dept Quim,CONICET, Suc 4-CC-16, RA-1900 La Plata, Buenos Aires, Argentina
[2] Austrian Inst Technol, Biosensor Technol, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[3] Austrian Inst Technol, Competence Ctr Electrochem Surface Technol CEST, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[4] CEST UNLP Partner Lab Bioelect, Diagonal 64 & 113, RA-1900 La Plata, Buenos Aires, Argentina
关键词
POLYELECTROLYTE BRUSHES; LABEL-FREE; PHOSPHATE; MODULATION; SURFACE; COLLAPSE; PROTON; STATES;
D O I
10.1021/acs.langmuir.9b00910
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reversible control of the graphene Dirac point using external chemical stimuli is of major interest in the development of advanced electronic devices such as sensors and smart logic gates. Here, we report the coupling of chemoresponsive polymer brushes to reduced graphene oxide (rGO)-based field-effect transistors to modulate the graphene Dirac point in the presence of specific divalent cations. Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) brushes were grown on the transistor channel by atom transfer radical polymerization initiated from amine-pyrene linkers noncovalently attached to rGO surfaces. Our results show an increase in the Dirac point voltage due to electrostatic gating effects upon the specific binding of Ca2+ and Mg2+ to the PMEP brushes. We demonstrate that the electrostatic gating is reversibly controlled by the charge density of the polymer brushes, which depends on the divalent cation concentration. Moreover, a theoretical formalism based on the Grahame equation and a Langmuir-type binding isotherm is presented to obtain the PMEP-cation association constant from the experimental data.
引用
收藏
页码:8038 / 8044
页数:7
相关论文
共 50 条
  • [21] Functionalized anthradithiophenes for organic field-effect transistors
    Chen, Ming-Chou
    Kim, Choongik
    Chen, Sheng-Yu
    Chiang, Yen-Ju
    Chung, Ming-Che
    Facchetti, Antonio
    Marks, Tobin J.
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (09) : 1029 - 1036
  • [22] Microwave switching of graphene field effect transistor at and far from the Dirac point
    Deligeorgis, G.
    Dragoman, M.
    Neculoiu, D.
    Dragoman, D.
    Konstantinidis, G.
    Cismaru, A.
    Plana, R.
    APPLIED PHYSICS LETTERS, 2010, 96 (10)
  • [23] APPLICATION OF FIELD-EFFECT TRANSISTORS TO SIGNAL SWITCHING
    KRASNOSELSKIY, IN
    SHPAGIN, AA
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1977, 31-2 (08) : 37 - 41
  • [24] MAGNETIC SWITCHING EFFECT IN SPIN FIELD-EFFECT TRANSISTORS
    Yang, Jun
    Jiang, Kai-Ming
    Wu, Wen Yuan
    Gong, Yan Chun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (23): : 4501 - 4507
  • [25] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [26] Transconductance Amplification in Dirac-Source Field-Effect Transistors Enabled by Graphene/Nanotube Hereojunctions
    Xu, Lin
    Qiu, Chenguang
    Peng, Lian-Mao
    Zhang, Zhiyong
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (05):
  • [27] Energy Dissipation in Graphene Field-Effect Transistors
    Freitag, Marcus
    Steiner, Mathias
    Martin, Yves
    Perebeinos, Vasili
    Chen, Zhihong
    Tsang, James C.
    Avouris, Phaedon
    NANO LETTERS, 2009, 9 (05) : 1883 - 1888
  • [28] Sensing at the Surface of Graphene Field-Effect Transistors
    Fu, Wangyang
    Jiang, Lin
    van Geest, Erik P.
    Lima, Lia M. C.
    Schneider, Gregory F.
    ADVANCED MATERIALS, 2017, 29 (06)
  • [29] Tunnel field-effect transistors with graphene channels
    D. A. Svintsov
    V. V. Vyurkov
    V. F. Lukichev
    A. A. Orlikovsky
    A. Burenkov
    R. Oechsner
    Semiconductors, 2013, 47 : 279 - 284
  • [30] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)