Extracting buildings from airborne laser scanning point clouds using a marked point process

被引:16
|
作者
Yang, Bisheng [1 ]
Xu, Wenxue [2 ]
Yao, Wei [3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] State Ocean Adm, Inst Oceanog 1, Qingdao 266061, Peoples R China
[3] Tech Univ Munich, D-80333 Munich, Germany
基金
美国国家科学基金会;
关键词
point clouds filtering; airborne laser scanning; building extraction; marked point process; LAND-COVER CLASSIFICATION; FOOTPRINT EXTRACTION; AUTOMATED EXTRACTION; STOCHASTIC APPROACH; LIDAR DATA; RECONSTRUCTION; IMAGERY; FUSION;
D O I
10.1080/15481603.2014.950117
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Automatic extraction of buildings from airborne laser scanning (ALS) point clouds is essential for 3D building reconstruction. This paper presents a two-part approach for extracting buildings from ALS data. First, building objects are extracted from ALS data by a marked point process using the Gibbs energy model of buildings and sampled by a reversible jump Markov chain Monte Carlo algorithm. Second, a refinement operation is performed to filter the non-building points and false building objects before extracting buildings from the detected building objects. Experimental results and evaluation using ISPRS benchmark data-sets showed the robustness of the proposed method.
引用
收藏
页码:555 / 574
页数:20
相关论文
共 50 条
  • [11] EVALUATION OF VERTICAL LACUNARITY PROFILES IN FORESTED AREAS USING AIRBORNE LASER SCANNING POINT CLOUDS
    Szekely, B.
    Kania, A.
    Standovar, T.
    Heilmeier, H.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 3 (08): : 93 - 99
  • [12] Extraction of Tree Crowns From Mobile Laser Scanning Data Using A Marked Point Process Model
    Li, Jonathan
    Yu, Yongtao
    Guan, Haiyan
    Gong, Zheng
    2ND ISPRS INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING (CVRS 2015), 2016, 9901
  • [13] A marked point process for automated building detection from lidar point-clouds
    Yu, Yongtao
    Li, Jonathan
    Guan, Haiyan
    Wang, Cheng
    REMOTE SENSING LETTERS, 2013, 4 (11) : 1127 - 1136
  • [14] Evaluating Factors Impacting Fallen Tree Detection from Airborne Laser Scanning Point Clouds
    Heinaro, Einari
    Tanhuanpaa, Topi
    Vastaranta, Mikko
    Yrttimaa, Tuomas
    Kukko, Antero
    Hakala, Teemu
    Mattsson, Teppo
    Holopainen, Markus
    REMOTE SENSING, 2023, 15 (02)
  • [15] SPATIAL ANALYSIS OF AIRBORNE LASER SCANNING POINT CLOUDS FOR PREDICTING FOREST STRUCTURE
    Häbel, Henrike
    Balazs, Andras
    Myllymäki, Mari
    Mathematical and Computational Forestry and Natural-Resource Sciences, 2021, 13 (01): : 15 - 28
  • [16] SPATIAL ANALYSIS OF AIRBORNE LASER SCANNING POINT CLOUDS FOR PREDICTING FOREST STRUCTURE
    Habel, Henrike
    Balazs, Andras
    Myllymaki, Mari
    MATHEMATICAL AND COMPUTATIONAL FORESTRY & NATURAL-RESOURCE SCIENCES, 2021, 13 (01): : 15 - 28
  • [17] Extracting Highway Cross Slopes From Airborne and Mobile LiDAR Point Clouds
    Shams, Alireza
    Sarasua, Wayne A.
    Russell, Brook T.
    Davis, William J.
    Post, Christopher
    Rastiveis, Heidar
    Famili, Afshin
    Cassule, Leo
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (02) : 372 - 384
  • [18] Extracting Road Surface from Mobile Laser Scanning Point Clouds in Large Scale Urban Environment
    Wang, Hanyun
    Wang, Cheng
    Chen, Yiping
    Yang, Wentao
    Li, Jonathan
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2912 - 2917
  • [19] A Flexible Architecture for Extracting Metro Tunnel Cross Sections from Terrestrial Laser Scanning Point Clouds
    Cao, Zhen
    Chen, Dong
    Shi, Yufeng
    Zhang, Zhenxin
    Jin, Fengxiang
    Yun, Ting
    Xu, Sheng
    Kang, Zhizhong
    Zhang, Liqiang
    REMOTE SENSING, 2019, 11 (03)
  • [20] Mapping Tree Canopy in Urban Environments Using Point Clouds from Airborne Laser Scanning and Street Level Imagery
    Rodriguez-Puerta, Francisco
    Barrera, Carlos
    Garcia, Borja
    Perez-Rodriguez, Fernando
    Garcia-Pedrero, Angel M.
    SENSORS, 2022, 22 (09)