Nonequilibrium transport in quantum impurity models: The Bethe ansatz for open systems

被引:170
|
作者
Mehta, Pankaj [1 ]
Andrei, Natan [1 ]
机构
[1] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA
关键词
D O I
10.1103/PhysRevLett.96.216802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an exact nonperturbative framework to compute steady-state properties of quantum impurities subject to a finite bias. We show that the steady-state physics of these systems is captured by nonequilibrium scattering eigenstates which satisfy an appropriate Lippman-Schwinger equation. Introducing a generalization of the equilibrium Bethe ansatz-the nonequilibrium Bethe ansatz-we explicitly construct the scattering eigenstates for the interacting resonance level model and derive exact, nonperturbative results for the steady-state properties of the system.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nonequilibrium transport in the Anderson model of a biased quantum dot: Scattering Bethe ansatz phenomenology
    Chao, Sung-Po
    Palacios, Guillaume
    PHYSICAL REVIEW B, 2011, 83 (19)
  • [2] Nonequilibrium transport in open quantum systems
    Knezevic, I
    Ferry, DK
    PROCEEDINGS OF THE CONFERENCE PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS II, 2003, : 214 - 222
  • [3] The algebraic Bethe ansatz for open vertex models
    Li, Guang-Liang
    Shi, Kang-Jie
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [4] BETHE-ANSATZ FOR AN OPEN HEISENBERG SPIN CHAIN WITH IMPURITY
    BHATTACHARYA, N
    CHOWDHURY, AR
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (03) : 679 - 685
  • [5] The algebraic Bethe ansatz and quantum integrable systems
    Slavnov, N. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) : 727 - 766
  • [6] Nonequilibrium transport in quantum impurity models: exact path integral simulations
    Segal, Dvira
    Millis, Andrew J.
    Reichman, David R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) : 14378 - 14386
  • [7] Bethe ansatz for quantum strings
    Arutyunov, G
    Frolov, S
    Staudacher, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10): : 295 - 315
  • [8] BETHE ANSATZ ON A QUANTUM COMPUTER?
    Nepomechie, Rafael, I
    QUANTUM INFORMATION & COMPUTATION, 2021, 21 (3-4) : 255 - 265
  • [9] The Bethe Ansatz as a Quantum Circuit
    Ruiz, Roberto
    Sopena, Alejandro
    Gordon, Max Hunter
    Sierra, German
    Lopez, Esperanza
    QUANTUM, 2024, 8
  • [10] Bethe ansatz solvable multi-chain quantum systems
    Zvyagin, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (41): : R21 - R53