Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

被引:108
|
作者
Heath, Garvin A. [1 ]
O'Donoughue, Patrick
Arent, Douglas J.
Bazilian, Morgan
机构
[1] Joint Inst Strateg Energy Anal, Golden, CO 80401 USA
关键词
life cycle assessment; methane leakage; meta-analysis; NATURAL-GAS; METHANE; COAL; FOOTPRINT;
D O I
10.1073/pnas.1309334111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
引用
收藏
页码:E3167 / E3176
页数:10
相关论文
共 50 条
  • [1] Life cycle greenhouse gas emissions of China shale gas
    Li, Xi
    Mao, Hongmin
    Ma, Yongsong
    Wang, Bing
    Liu, Wenshi
    Xu, Wenjia
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2020, 152
  • [2] Life cycle greenhouse gas emissions of Marcellus shale gas
    Jiang, Mohan
    Griffin, W. Michael
    Hendrickson, Chris
    Jaramillo, Paulina
    VanBriesen, Jeanne
    Venkatesh, Aranya
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (03):
  • [3] Life cycle greenhouse gas emissions and freshwater consumption of liquefied Marcellus shale gas used for international power generation
    Mallapragada, Dharik S.
    Reyes-Bastida, Eric
    Roberto, Frank
    McElroy, Erin M.
    Veskovic, Dejan
    Laurenzi, Ian J.
    [J]. JOURNAL OF CLEANER PRODUCTION, 2018, 205 : 672 - 680
  • [4] Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China
    Chang, Yuan
    Huang, Runze
    Ries, Robert J.
    Masanet, Eric
    [J]. ENERGY, 2015, 86 : 335 - 343
  • [5] Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas
    Laurenzi, Ian J.
    Jersey, Gilbert R.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) : 4896 - 4903
  • [6] Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum
    Burnham, Andrew
    Han, Jeongwoo
    Clark, Corrie E.
    Wang, Michael
    Dunn, Jennifer B.
    Palou-Rivera, Ignasi
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) : 619 - 627
  • [7] Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation
    Warner, Ethan S.
    Heath, Garvin A.
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S73 - S92
  • [8] Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power
    Raadal, Hanne Lerche
    Gagnon, Luc
    Modahl, Ingunn Saur
    Hanssen, Ole Jorgen
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (07): : 3417 - 3422
  • [9] Life cycle greenhouse gas emissions from Barnett Shale gas used to generate electricity
    Heath, G.
    Meldrum, J.
    Fisher, N.
    Arent, D.
    Bazilian, M.
    [J]. JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES, 2014, 8 : 46 - 55
  • [10] Evaluation of greenhouse gas emissions associated with electric power generation in Brazil
    Carvalho, FD
    Bizzo, W
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES, 2001, : 929 - 934