Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power

被引:166
|
作者
Raadal, Hanne Lerche [1 ]
Gagnon, Luc [2 ]
Modahl, Ingunn Saur [1 ]
Hanssen, Ole Jorgen [1 ]
机构
[1] Ostfold Res, N-1671 Krakeroy, Norway
[2] Hydroquebec, Montreal, PQ H2Z 1A4, Canada
来源
关键词
LCA; Greenhouse gases; Wind power; Hydro power; Electricity; ENERGY; TECHNOLOGIES; TURBINES; PLANTS; FARM;
D O I
10.1016/j.rser.2011.05.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a comprehensive overview of the life cycle GHG emissions from wind and hydro power generation, based on relevant published studies. Comparisons with conventional fossil, nuclear and other renewable generation systems are also presented, in order to put the GHG emissions of wind and hydro power in perspective. Studies on GHG emissions from wind and hydro power show large variations in GHG emissions, varying from 0.2 to 152g CO(2)-equivalents per kW h. The main parameters affecting GHG emissions are also discussed in this article, in relation to these variations. The wide ranging results indicate a need for stricter standardised rules and requirements for life-cycle assessments (LCAs), in order to differentiate between variations due to methodological disparities and those due to real differences in performance of the plants. Since LCAs are resource- and time-intensive, development of generic GHG results for each technology could be an alternative to developing specific data for each plant. This would require the definition of typical parameters for each technology, for example a typical capacity factor for wind power. Such generic data would be useful in documenting GHG emissions from electricity generation for electricity trading purposes. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3417 / 3422
页数:6
相关论文
共 50 条
  • [1] Characterization of the life cycle greenhouse gas emissions from wind electricity generation systems
    Kadiyala A.
    Kommalapati R.
    Huque Z.
    [J]. International Journal of Energy and Environmental Engineering, 2017, 8 (1) : 55 - 64
  • [2] Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power
    Dolan, Stacey L.
    Heath, Garvin A.
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S136 - S154
  • [3] Life cycle greenhouse gas emissions from power generation in China's provinces in 2020
    Li, Xin
    Chalvatzis, Konstantinos J.
    Pappas, Dimitrios
    [J]. APPLIED ENERGY, 2018, 223 : 93 - 102
  • [4] A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies
    Weisser, Daniel
    [J]. ENERGY, 2007, 32 (09) : 1543 - 1559
  • [5] Life cycle assessment (LCA) for greenhouse gas (GHG) emissions from microalgae biodiesel production
    Woertz, Ian
    Du, Niu
    Rhodes, James
    Mendola, Dominick
    Mitchell, Greg
    Lundquist, Tryg
    Benemann, John
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [6] Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems
    Kadiyala, Akhil
    Kommalapati, Raghava
    Huque, Ziaul
    [J]. SUSTAINABILITY, 2016, 8 (06):
  • [7] Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation
    Warner, Ethan S.
    Heath, Garvin A.
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S73 - S92
  • [8] Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power
    Miller, Ian
    Gencer, Emre
    Vogelbaum, Hilary S.
    Brown, Patrick R.
    Torkamani, Sarah
    O'Sullivan, Francis M.
    [J]. APPLIED ENERGY, 2019, 238 : 760 - 774
  • [9] Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation
    Heath, Garvin A.
    O'Donoughue, Patrick
    Arent, Douglas J.
    Bazilian, Morgan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (31) : E3167 - E3176
  • [10] Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation
    Burkhardt, John J., III
    Heath, Garvin
    Cohen, Elliot
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S93 - S109