Residual Stress Prediction by Adaptive Neuro-Fuzzy System in Milling Aluminum Alloy

被引:1
|
作者
Zhang, X. H. [1 ]
An, Q. L. [1 ]
Chen, M. [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200030, Peoples R China
来源
MANUFACTURING AUTOMATION TECHNOLOGY | 2009年 / 392-394卷
关键词
Aluminum; Residual stress; Prediction; ANFIS; SURFACE-ROUGHNESS; INFERENCE SYSTEM;
D O I
10.4028/www.scientific.net/KEM.392-394.504
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a sort of large-scaled structural components in modern aircraft, aluminum part has been widely used nowadays. Its residual stress measurement and prediction are necessary to reduce machining deformation and keep machining precision. By Adaptive Neuro-Fuzzy Inference System (ANFIS), residual stress prediction model is set up based on different cutting parameters. Due to data sample scarcity, input selection and regression are analyzed comparatively to reduce input data dimension. It shows that cutting speed and feed per tooth have major impacts on residual stress, but they do not have better prediction ability in ANFIS model. The combination of cutting speed and radial depth of cut can predict the residual stress better.
引用
收藏
页码:504 / 508
页数:5
相关论文
共 50 条
  • [21] Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
    Mensah, Rhoda Afriyie
    Xiao, Jie
    Das, Oisik
    Jiang, Lin
    Xu, Qiang
    Alhassan, Mohammed Okoe
    POLYMERS, 2020, 12 (01)
  • [22] Adaptive Neuro-Fuzzy System for Current Prediction in Electric Arc Furnaces
    Panoiu, Manuela
    Ghiormez, Loredana
    Panoiu, Caius
    SOFT COMPUTING APPLICATIONS, (SOFA 2014), VOL 1, 2016, 356 : 423 - 437
  • [23] Application of Adaptive Neuro-Fuzzy Inference System for Diabetes Classification and Prediction
    Geman, Oana
    Chiuchisan, Iuliana
    Toderean , Roxana
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 639 - 642
  • [24] Reservoir outflow prediction using adaptive neuro-fuzzy interference system
    Tatavarthi, Ahi K. Pratyusha
    Vemuri, Jayaprakash
    Singh, Prabhakar
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024,
  • [25] An adaptive neuro-fuzzy approach for system modeling
    Ouyang, CS
    Lee, WJ
    Lee, SJ
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1875 - 1880
  • [26] Multioutput Adaptive Neuro-fuzzy Inference System
    Benmiloud, T.
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 94 - 98
  • [27] Improved adaptive neuro-fuzzy inference system
    Tarek Benmiloud
    Neural Computing and Applications, 2012, 21 : 575 - 582
  • [28] Improved adaptive neuro-fuzzy inference system
    Benmiloud, Tarek
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03): : 575 - 582
  • [29] An adaptive neuro-fuzzy system for efficient implementations
    Echanobe, J.
    del Campo, I.
    Bosque, G.
    INFORMATION SCIENCES, 2008, 178 (09) : 2150 - 2162
  • [30] Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system
    Jalalifar, H.
    Mojedifar, S.
    Sahebi, A. A.
    Nezamabadi-Pour, H.
    COMPUTERS AND GEOTECHNICS, 2011, 38 (06) : 783 - 790