Dynamic workflow composition using Markov decision processes

被引:46
|
作者
Doshi, P [1 ]
Goodwin, R [1 ]
Akkiraju, R [1 ]
Verma, K [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60680 USA
关键词
D O I
10.1109/ICWS.2004.1314784
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of Web services has made automated workflow composition relevant to web based applications. One technique, that has received some attention, for automatically composing workflows is AI-based classical planning. However classical planning suffers from the paradox of first assuming deterministic behavior of Web services, then requiring the additional overhead of execution monitoring to recover from unexpected behavior of services. To address these concerns, we propose using Markov decision processes (MDPs), to model workflow composition. Our method models both, the inherent stochastic nature of Web services, and the dynamic nature of the environment. The resulting workflows are robust to non-deterministic behaviors of Web services and adaptive to a changing environment. Using an example scenario, we demonstrate our method and provide empirical results in its support.
引用
收藏
页码:576 / 582
页数:7
相关论文
共 50 条
  • [21] Planning using hierarchical constrained Markov decision processes
    Feyzabadi, Seyedshams
    Carpin, Stefano
    AUTONOMOUS ROBOTS, 2017, 41 (08) : 1589 - 1607
  • [22] Assessing Software Quality Using the Markov Decision Processes
    Korkmaz, Omer
    Akman, Ibrahim
    Ostrovska, Sofiya
    HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, 2014, 24 (01) : 86 - 104
  • [23] Allocating services to applications using Markov decision processes
    Bannazadeh, Hadi
    Leon-Garcia, Alberto
    IEEE INTERNATIONAL CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS, PROCEEDINGS, 2007, : 141 - +
  • [24] Human Intention Recognition using Markov Decision Processes
    Lin, Hsien-I
    Chen, Wei-Kai
    2014 CACS INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS 2014), 2014, : 340 - 343
  • [25] Verification of Markov Decision Processes Using Learning Algorithms
    Brazdil, Tomas
    Chatterjee, Krishnendu
    Chmelik, Martin
    Forejt, Vojtech
    Kretinsky, Jan
    Kwiatkowska, Marta
    Parker, David
    Ujma, Mateusz
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2014, 2014, 8837 : 98 - 114
  • [26] Mobile Edge Offloading Using Markov Decision Processes
    Alasmari, Khalid R.
    Green, Robert C., II
    Alam, Mansoor
    EDGE COMPUTING - EDGE 2018, 2018, 10973 : 80 - 90
  • [27] Human Intent Prediction Using Markov Decision Processes
    McGhan, Catharine L. R.
    Nasir, Ali
    Atkins, Ella M.
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2015, 12 (05): : 393 - 397
  • [28] NEURAL DECODING SYSTEMS USING MARKOV DECISION PROCESSES
    Dantas, Henrique
    Mathews, V. John
    Wendelken, Suzanne M.
    Davis, Tyler S.
    Clark, Gregory A.
    Warren, David J.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 974 - 978
  • [29] Using Markov decision processes for controlling an animal disease
    Utilisation des processus décisionnels de Markov pour l'aide à la maîtrise d'une maladie animale
    2013, Lavoisier (27) : 4 - 5
  • [30] Optimal Storage Scheduling Using Markov Decision Processes
    Grillo, Samuele
    Pievatolo, Antonio
    Tironi, Enrico
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (02) : 755 - 764