Review of oil palm-derived activated carbon for CO2 capture

被引:30
|
作者
Lai, Jia Yen [1 ]
Ngu, Lock Hei [1 ]
Hashim, Siti Salwa [1 ]
Chew, Jiuan Jing [1 ]
Sunarso, Jaka [1 ]
机构
[1] Swinburne Univ Technol, Res Ctr Sustainable Technol, Fac Engn Comp & Sci, Jalan Simpang Tiga, Sarawak 93350, Malaysia
关键词
Activated carbon; Adsorbent; CO2; adsorption; Oil palm biomass; HIGH-SURFACE-AREA; METAL-ORGANIC FRAMEWORKS; CHEMICAL ACTIVATION; PHOSPHORIC-ACID; DIOXIDE CAPTURE; PORE DEVELOPMENT; POROUS CARBON; PHYSICAL ACTIVATION; MOLECULAR-SIEVES; SULFUR-DIOXIDE;
D O I
10.1007/s42823-020-00206-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing ambient carbon dioxide (CO2) concentration from anthropogenic greenhouse gas emission has contributed to the growing rate of global land and ocean surface temperature. Various carbon capture and storage (CCS) technologies were established to mitigate this impending issue. CO2 adsorption is gaining prominence since unlike traditional chemical absorption, it does not require high energy usage for solvent regeneration and consumption of corrosive chemical solvent. In CO2 adsorption, activated carbons show high CO2 adsorption capacity given their well-developed porous structures. Numerous researches employed oil palm wastes as low-cost precursors. This paper provides a comprehensive assessment of research works available thus far in oil palm-derived activated carbon (OPdAC) for CO2 adsorption application. First, we present the desired OPdAC characteristics and its precursors in terms of their chemical properties, elemental, and proximate compositions. This is followed by an overview of various activation methodologies and surface modification methods to attain the desired characteristics for CO2 adsorption. Then the focus turned to present available OPdAC CO2 adsorption performance and how it is affected by its physical and chemical characteristics. Based on these, we identify the challenges and the potential development in different aspects such as precursor selection, process development, and optimization of parameter. A pilot scale production cost analysis is also presented to compare various activation and surface modification methods, so that the appropriate method can be selected for CO2 adsorption.
引用
收藏
页码:201 / 252
页数:52
相关论文
共 50 条
  • [41] Preparation of Activated Carbon Fiber Adsorbent for Enhancement of CO2 Capture Capacity
    Hwang, Su-Hyun
    Park, Hyun-Soo
    Kim, Dong-Woo
    Jo, Young-Min
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2015, 31 (06) : 538 - 547
  • [42] Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture
    Sun, Nannan
    Sun, Chenggong
    Liu, Hao
    Liu, Jingjing
    Stevens, Lee
    Drage, Trevor
    Snape, Colin E.
    Li, Kaixi
    Wei, Wei
    Sun, Yuhan
    FUEL, 2013, 113 : 854 - 862
  • [43] Valorization of solid digestate into activated carbon and its potential for CO2 capture
    Quan, Cui
    Zhou, Yingying
    Wu, Chunfei
    Xu, Guoren
    Feng, Dongdong
    Zhang, Yu
    Gao, Ningbo
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 169
  • [44] Developing activated carbon adsorbents for pre-combustion CO2 capture
    Drage, T. C.
    Kozynchenko, O.
    Pevida, C.
    Plaza, M. G.
    Rubiera, F.
    Pis, J. J.
    Snape, C. E.
    Tennison, S.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 599 - 605
  • [45] PILOT-SCALE POSTCOMBUSTION CO2 CAPTURE USING ACTIVATED CARBON
    Smutna, J.
    Stefanica, J.
    Hajek, P.
    Ciahotny, K.
    Machac, P.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 2015, : 71 - 74
  • [46] Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites
    Lu, Chungsying
    Bai, Hsunling
    Wu, Bilen
    Su, Fengsheng
    Fen-Hwang, Jyh
    ENERGY & FUELS, 2008, 22 (05) : 3050 - 3056
  • [47] Study on fabrication conditions for activated carbon fibre adsorbents for CO2 capture
    An, Hui
    Thiruvenkatachari, Ramesh
    Yu, Xingxiang
    Feng, Bo
    Sui, Shi
    PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON COAL COMBUSTION, 2007, : 796 - 803
  • [48] Preparation of activated carbon from the biodegradable film for CO2 capture applications
    Serafin, J.
    Antosik, A. K.
    Wilpiszewska, K.
    Czech, Z.
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2018, 20 (03) : 75 - 80
  • [49] CO2 capture by electrothermal swing adsorption with activated carbon fibre materials
    An, Hui
    Feng, Bo
    Su, Shi
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (01) : 16 - 25
  • [50] CO2 capture by activated and impregnated anthracites
    Maroto-Valer, MM
    Tang, Z
    Zhang, YZ
    FUEL PROCESSING TECHNOLOGY, 2005, 86 (14-15) : 1487 - 1502