Analytically stable Higgs bundles on some non-Kahler manifolds

被引:3
|
作者
Zhang, Chuanjing [1 ]
Zhang, Xi [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Higgs bundles; Gauduchon manifold; Hermitian– Einstein equation; Non-compact; KOBAYASHI-HITCHIN CORRESPONDENCE; HERMITIAN-EINSTEIN METRICS; VECTOR-BUNDLES; STABILITY; CONNECTIONS;
D O I
10.1007/s10231-020-01055-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Higgs bundles on non-compact Hermitian manifolds. Under some assumptions for the underlying Hermitian manifolds which are not necessarily Kahler, we solve the Hermitian-Einstein equation on analytically stable Higgs bundles.
引用
收藏
页码:1683 / 1707
页数:25
相关论文
共 50 条
  • [41] Some recent progress in non-Kahler geometry
    Zheng, Fangyang
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (11) : 2423 - 2434
  • [42] On non-Kahler compact complex manifolds with balanced and astheno-Kahler metrics
    Latorre, Adela
    Ugarte, Luis
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 90 - 93
  • [43] Compactifications of heterotic theory on non-Kahler complex manifolds, I
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (04):
  • [44] COMPATIBILITY BETWEEN NON-KaHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS
    Ornea, L.
    Otiman, A-, I
    Stanciu, M.
    TRANSFORMATION GROUPS, 2023, 28 (04) : 1669 - 1686
  • [45] VECTOR BUNDLES ON NON-KAHLER ELLIPTIC SURFACES AND INTEGRABLE SYSTEMS
    Brinzanescu, Vasile
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 257 - 263
  • [46] Group actions, non-Kahler complex manifolds and SKT structures
    Poddar, Mainak
    Thakur, Ajay Singh
    COMPLEX MANIFOLDS, 2018, 5 (01): : 9 - 25
  • [47] Supersymmetric configurations, geometric transitions and new non-Kahler manifolds
    Chen, Fang
    Dasgupta, Keshav
    Franche, Paul
    Katz, Sheldon
    Tatar, Radu
    NUCLEAR PHYSICS B, 2011, 852 (03) : 553 - 591
  • [48] Hyperbolic geometry and non-Kahler manifolds with trivial canonical bundle
    Fine, Joel
    Panov, Dmitri
    GEOMETRY & TOPOLOGY, 2010, 14 (03) : 1723 - 1763
  • [49] On manifolds with trivial logarithmic tangent bundle: The non-kahler case
    Winkelmann, Joerg
    TRANSFORMATION GROUPS, 2008, 13 (01) : 195 - 209
  • [50] Stable Higgs bundles on compact Gauduchon manifolds
    Biswas, Indranil
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (1-2) : 71 - 74