Packing Constant in Orlicz Sequence Spaces Equipped with the p-Amemiya Norm

被引:7
|
作者
He, Xin [1 ,2 ]
Yu, Jijie [3 ]
Cui, Yunan [4 ]
Huo, Xin [5 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Harbin Normal Univ, Dept Math, Harbin 150025, Peoples R China
[3] Harbin Elect Power Vocat Technol Coll, Dept Math, Harbin 150001, Peoples R China
[4] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
[5] Harbin Inst Technol, Control & Simulat Ctr, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/626491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of packing spheres in Orlicz sequence space l(Phi,p) equipped with the p-Amemiya norm is studied, and a geometric characteristic about the reflexivity of l(Phi,p) is obtained, which contains the relevant work about l(p) (p > 1) and classical Orlicz spaces l(Phi) discussed by Rankin, Burlak, and Cleaver. Moreover the packing constant as well as Kottman constant in this kind of spaces is calculated.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Criteria for monotonicity properties of Musielak-Orlicz spaces equipped with the Amemiya norm
    Cui, Y
    Hudzik, H
    Szymaszkiewicz, L
    Wang, T
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) : 376 - 390
  • [32] ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Cui, Yunan
    Foralewski, Pawel
    Konczak, Joanna
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 623 - 652
  • [33] Orlicz-Lorentz Sequence Spaces Equipped with the Orlicz Norm
    Yunan Cui
    Paweł Foralewski
    Joanna Kończak
    Acta Mathematica Scientia, 2022, 42 : 623 - 652
  • [34] Amemiya Norm Equals Orlicz Norm in Musielak-Orlicz Spaces
    Xian Ling FAN
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (02) : 281 - 288
  • [35] Amemiya norm equals Orlicz norm in Musielak-Orlicz spaces
    Fan, Xian Ling
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 281 - 288
  • [36] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    巩万中
    张道祥
    Acta Mathematica Scientia, 2016, (06) : 1577 - 1589
  • [37] Some Geometric Properties in Orlicz Sequence Spaces equipped with Orlicz Norm
    Cui, Yunan
    Hudzik, Henryk
    Nowak, Marian
    Pluciennik, Ryszard
    JOURNAL OF CONVEX ANALYSIS, 1999, 6 (01) : 91 - 113
  • [38] MONOTONICITY IN ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM
    Gong, Wanzhong
    Zhang, Daoxiang
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1577 - 1589
  • [39] Smoothness of Musielak-Orlicz sequence spaces equipped with the Orlicz norm
    Zbaszyniak, Z
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 507 - 511
  • [40] Kadec–Klee properties of Orlicz–Lorentz sequence spaces equipped with the Orlicz norm
    Yunan Cui
    Paweł Foralewski
    Henryk Hudzik
    Radosław Kaczmarek
    Positivity, 2021, 25 : 1273 - 1294