Proving the Pythagorean Theorem via Infinite Dissections

被引:0
|
作者
Lengvarszky, Zsolt [1 ]
机构
[1] Louisiana State Univ, Dept Math, Shreveport, LA 71115 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2013年 / 120卷 / 08期
关键词
D O I
10.4169/amer.math.monthly.120.08.751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Novel proofs of the Pythagorean Theorem are obtained by dissecting the squares on the sides of the abc triangle into a series of infinitely many similar triangles.
引用
收藏
页码:751 / 753
页数:3
相关论文
共 50 条
  • [31] Theorem proving for verification
    Harrison, John
    COMPUTER AIDED VERIFICATION, 2008, 5123 : 11 - 18
  • [32] Constraints and theorem proving
    Ganzinger, H
    Nieuwenhuis, R
    CONSTRAINTS IN COMPUTATIONAL LOGICS: THEORY AND APPLICATIONS, 2001, 2002 : 159 - 201
  • [33] Advances in theorem proving
    Kientzle, T
    DR DOBBS JOURNAL, 1997, 22 (03): : 16 - 16
  • [34] Theorem Proving Modulo
    Gilles Dowek
    Thérèse Hardin
    Claude Kirchner
    Journal of Automated Reasoning, 2003, 31 : 33 - 72
  • [35] Automated theorem proving
    Plaisted, David A.
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2014, 5 (02) : 115 - 128
  • [36] Unsound theorem proving
    Lynch, C
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2004, 3210 : 473 - 487
  • [37] REGULAR DISSECTIONS OF AN INFINITE STRIP
    WETZEL, JE
    DISCRETE MATHEMATICS, 1995, 146 (1-3) : 263 - 269
  • [38] Automated Theorem Proving via Interacting with Proof Assistants by Dynamic Strategies
    Mo, Guangshuai
    Xiong, Yan
    Huang, Wenchao
    Ma, Lu
    2020 6TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2020), 2020, : 71 - 75
  • [39] A new generalisation of the Pythagorean theorem
    Darvasi, Gyula
    MATHEMATICAL GAZETTE, 2007, 91 (520): : 128 - 131
  • [40] Pythagorean Theorem with Hippocrates' Lunes
    Caglayan, Gunhan
    SPREADSHEETS IN EDUCATION, 2015, 8 (02):