Proving the Pythagorean Theorem via Infinite Dissections

被引:0
|
作者
Lengvarszky, Zsolt [1 ]
机构
[1] Louisiana State Univ, Dept Math, Shreveport, LA 71115 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2013年 / 120卷 / 08期
关键词
D O I
10.4169/amer.math.monthly.120.08.751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Novel proofs of the Pythagorean Theorem are obtained by dissecting the squares on the sides of the abc triangle into a series of infinitely many similar triangles.
引用
收藏
页码:751 / 753
页数:3
相关论文
共 50 条
  • [1] Theorem proving in infinite herbrand domain
    Y. Y. Samokhvalov
    Cybernetics and Systems Analysis, 1997, 33 : 456 - 458
  • [2] Theorem proving in infinite Herbrand domain
    Samokhvalov, YY
    CYBERNETICS AND SYSTEMS ANALYSIS, 1997, 33 (03) : 456 - 458
  • [3] The Pythagorean theorem: II. the infinite discrete case
    Kadison, RV
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) : 5217 - 5222
  • [4] The n-dimensional Pythagorean theorem via the divergence theorem
    Eifler, Larry
    Rhee, Noah H.
    AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (05): : 456 - 457
  • [5] Theorem-proving anonymity of infinite-state systems
    Kawabe, Yoshinobu
    Mano, Ken
    Sakurada, Hideki
    Tsukada, Yasuyuki
    INFORMATION PROCESSING LETTERS, 2007, 101 (01) : 46 - 51
  • [6] Telescope guidance via automatic theorem proving
    Cherkashin, E
    Vassilyev, S
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1439 - 1444
  • [7] Verification condition generation via theorem proving
    Matthews, John
    Moore, J. Strother
    Ray, Sandip
    Vroon, Daron
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2006, 4246 : 362 - 376
  • [8] THEOREM-PROVING VIA GENERAL MATINGS
    ANDREWS, PB
    JOURNAL OF THE ACM, 1981, 28 (02) : 193 - 214
  • [9] The Pythagorean theorem
    Hersey, M
    SCIENCE, 1911, 33 (01) : 457 - 457
  • [10] 'ON THE PYTHAGOREAN THEOREM'
    LEVY, RJ
    CHELSEA, 1986, (45): : 104 - 105